• Title/Summary/Keyword: BSTZ

Search Result 2, Processing Time 0.014 seconds

Microstructures and Electrical Properties of Zr Modified $({Ba_{1-x}},{Sr_x})TiO_3$ Thin Films (Zr이 첨가된 $({Ba_{1-x}},{Sr_x})TiO_3$ 박막의 미세구조와 전기적 성질)

  • Park, Sang-Sik
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.607-611
    • /
    • 2000
  • Zr modified $(Ba_{1-x},Sr_x)TiO_3$ thin films as capacitor for high density DRAM were deposited by r.f. magnetron sputtering. The films deposited at various chamber pressure exhibited a polycrystalline structure. The Zr/Ti ratio of the films increased significantly with decreasing the chamber pressure and this variation affected the microstructure and surface roughness of films When chamber pressure increased dielectric constant of the films effected due to decrease of Zr. The thin films prepared in this study show dielectric constant of 380 to 525 at 100KHz. The variation of capacitance and polarization measured as a function of bias voltage suggested that all films were paraelectric phases. Leakage current exhibited smaller value as chamber pressure decrease and the leakage current density of the films deposited above 10mTorr was $10^{-7}~10^{-8}A/cm^2$ order at 200kV/cm. $(Ba_{1-x},Sr_x)(Ti_{1-y},Zr_y)O_3$ thin films in this study appeared to be potential thin film capacitor for high density DRAM.

  • PDF

Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3-SrCO3-TeO2-ZnO glass series

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;M.I. Sayyed;S. Hashim;I. Abdullahi;Mohamed Elsafi;K. Keshavamurthy;G. Jagannath
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.247-256
    • /
    • 2024
  • The glass series modified by tungsten oxide was created using the compounds (75-x) B2O3- 10SrCO3- 8TeO2- 7ZnO - xWO3, where x = 0, 1, 5, 10, 22, 27, 34, and 40% mole percentage. A UV-visible spectrophotometer and thermogravimetric-differential thermal analysis (TG-DTA) methods were employed to characterize the specimen's optical and phase transition attributes, respectively. The mass-attenuation coefficient (AC) of all created glasses from BSTZW0 to BSTZ7 was estimated using Geant4 code from 0.05 to 3 MeV and compared to the XCOM software results, with a relative difference of less than 2% between the two results. The increase of WO3 percentage lead to an increase in the Linear-AC at each studied energy, and this is mainly due to the fact that the higher the percentage of WO3 in the glass increases its density which causes an increase in the Linear-AC, so an energy of 0.06 MeV, as an example, the values of the Linear-AC was 4.009, 4.509, 5.442, 6812, 8.564, 9.856, 10.999 and 11.628 cm-1 form BSTZW0 too BSTZW7, respectively. The Half-VL (value layer), Mean-FP (free path), Tenth-VL, and Radiation attenuation performance (RAP) were also calculated for the current BSTZW-glass samples and revealed that BSTZW7 had the best gamma ray attenuation performance at all discussed energies when compared to other studied glass samples.