• Title/Summary/Keyword: BSGI Phantom

Search Result 3, Processing Time 0.015 seconds

The Evaluation of Usefulness of Pixelated Breast-Specific Gamma Imaging in Thyroid scan (Pixelated Breast-Specific Gamma Imaging(BSGI) 감마 카메라를 이용한 갑상선 검사의 유용성 평가)

  • Jung, Eun-Mi;Seong, Ji-Hye;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.90-93
    • /
    • 2011
  • Purpose: A Pixelated BSGI gamma camera has features to enhance resolution and sensitivity and minimize the distance between detector and organs by narrow FOV. Therefore, it is known as useful device to examine small organs such as thyroid, parathyroid and gall bladder. In general, when we would like to enlarge the size of images and obtain high resolution images by gamma camera in nuclear medicine study, we use pinhole collimator. The purpose of this study is to evaluate the usefulness of Pixelated BSGI gamma camera and to compare to it using pinhole collimator in thyroid scan which is a study of typical small organs. Materials and methods: (1) The evaluation of sensitivity and spatial resolution: We measured sensitivity and spatial resolution of Pixelated BSGI with LEHR collimator and Infinia gamma camera with pinhole collimator. The sensitivity was measured by point source sensitivity test recommended by IAEA. We acquired images considering dead time in BSGI gamma camera for 100 seconds and used $^{99m}TcO4-\;400{\mu}Ci$ line source. (2) The evaluation of thyroid phantom: The thyroid phantom was filled with $^{99m}TcO4-$. After set 300 sec or 100 kcts stop conditions, we acquired images from both pixelated BSGI gamma camera and Infinia gamma camera with LEHR collimator. And we performed all thyroid studies in the same way as current AMC's procedure. Results: (1) the result of sensitivity: As a result, the sensitivity and spatial resolution of pixelated BSGI gamma camera were better than Infinia's. The sensitivities of pixelated BSGI and Infinia gamma camera were $290cps/{\mu}Ci$ and $350cps/{\mu}Ci$ respectively. So, the sensitivity of pixelated BSGI was 1.2 times higher than Infinia's (2) the result of thyroid phantom: Consequently, we confirmed that images of Pixelated BSGI gamma camera were more distinguishable between hot and cold spot compared with Infinia gamma camera. Conclusion: A pixelated BSGI gamma camera is able to shorten the acquisition time. Furthermore, the patients are exposed to radiation less than before by reducing amount of radiopharmaceutical doses. Shortening scan time makes images better by minimizing patient's breath and motion. And also, the distance between organ and detector is minimized because detector of pixelated BSGI gamma camera is small and possible to rotate. When patient cannot move at all, it is useful since device is feasible to move itself. However, although a pixelated BSGI gamma camera has these advantages, the effect of dead time occurs over 2000 cts/s since it was produced only for breast scan. So, there were low concentrations in organ. Therefore, we should consider that it needs to take tests to adjust acquisition time and amount of radiopharmaceutical doses in thyroid scan case with a pixelated BSGI gamma camera.

  • PDF

The study of Breast Specific Gamma Imaging Protocol using Self-development Phantom (자체 제작된 팬텀을 적용한 Breast Specific Gamma Imaging 검사 프로토콜에 대한 고찰)

  • Lee, Hae-Jung;Lee, Juyoung;Lim, Kuen-Kyo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.39-47
    • /
    • 2014
  • Purpose As breast cancer patients continue to increase every year, cases of BSGI are on the rise with a heavier reliance on it. However, BSGI protocol in hospitals was not studied enough despite it was covered by hospital's condition and recommendation of manufacturers. The objective of the study was an examination of methods to be applicable to BSGI protocols, putting the self-development phantom to use in quality assessment of the images. Materials and Methods Dilon 6800 (Dilon Technologies Inc, Newport News, USA) was used in the study and five different sizes of sphere were distinctively produced in the phantom. The study used $^{99m}TcO_4$. The cases were classified in to three categories that background radioactivity to region of interest as ratio of 2: 4: 8, They were acquired images for 5, 7, 10mins. The acquired image was set region of interest according to the size of sphere, and We analyzed quantitative and qualitative analysis. The acquired data statistically analyzed with SPSS ver.18.0. Results As the result of quantitative and qualitative analysis, count rate of each sphere in accordance with difference of injection dose showed that higher count rate as injection dose and sphere size increased (P<0.005). Count rate of each sphere in accordance with difference of acquisition time showed that higher count rate as acquisition time and sphere size increased (P<0.005). Contrast noise ratio of each sphere in accordance with difference of injection dose showed that higher contrast noise ratio as injection dose increased. Particularly, Contrast noise ratio of eight times ratio images was the highest among. Contrast noise ratio of each sphere in accordance with difference of acquisition time showed that higher contrast noise ratio as acquisition time increased. And, Contrast noise ratio of seven minute image was the highest among (P<0.005). Conclusion There was significant change of Contrast noise ratio through quantitative and qualitative analysis. Moreover, We found usefulness of phantom. If Institutions identified image through the phantom study and they made BSGI protocol, We expected to help the improvement of diagnostic value of the images.

  • PDF

A Study on Effect of the Image Applying to Breast Implants in Breast Specific Gamma Imaging (유방전용감마카메라에서 유방 보형물이 영상에 미치는 영향에 관한 고찰)

  • Lee, Juyoung;Lee, Tae Soo;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • There are limits to check the lesion as inserting a breast implant patients. So the application of BSGI based on Nuclear Medicine examination has increased. In this study, therefore we confirmed the effect of the image applying to breast implants in Breast Specific Gamma Imaging. We utilized Dilon 6800 BSGI scanner and developed the phantom. The self-development phantom was a rectangular shape of $230{\times}190{\times}80mm$ size and had 5 spheres which consisted of diameters of 10, 13, 17, 22, 28 mm in central part. We injected $^{99m}TcO_4$ into the self-development phantom in the proportion of four to one and made each additional phantom filled with 0.9 % sodium chloride, silicon and paraffin. Each additional phantom was placed between detector and self-development phantom. Each image was acquired five times depending on the type and thickness of the additional phantom. Statistical analysis with SPSS ver.18 was applied. In the test of variation according to the thickness of all additional phantoms, as the phantoms which 0.9% sodium chloride, silicon and paraffin increased, the attenuation variation was higher(P<0.005). There was no significant difference in the attenuation variation and the quality of image for type of the additional phantom. Therefore, if the effect of the image applying to breast implants in Breast Specific Gamma Imaging is confirmed, the higher diagnostic value can be achieved.