• Title/Summary/Keyword: BS7777

Search Result 6, Processing Time 0.022 seconds

The Study of Roof Design for LNG Storage Tank (LNG 저장탱크 Roof 설계에 관한 연구)

  • Lee K.W.;Hong S.H.;Oh B.T.;Kim Y.K.;Kim K.B,
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.32-37
    • /
    • 2002
  • Natural gas became one of the major sources of energy in Korea. As the consumption of natural gas increase, the more capacity of the LNG storage tanks Is required. Recently, Korea Gas Corp.(KOGAS) has developed the technology nt' designing the LNG storage tanks. In this study, some of the finite element analysis has been made for designing of the roof structure of LNG storage tanks. The load case and safety code used In this study were followed by BS7777.

  • PDF

Effect of Grain Refiner and Eutectic Si Modifier on Casting Properties of Al-Si-Cu Alloy System Containing Recycled Scrap (재활용 스크랩 함유 Al-Si-Cu계 합금의 주조특성에 미치는 결정립 미세화제와 공정 Si 개량화제의 영향)

  • Sung, Dong-Hyun;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.121-131
    • /
    • 2018
  • The effect of additives on the castability of the AC2BS aluminum alloy, which contains 35% recycled scrap, was investigated. For the wide utilization of the recycled scrap AC2BS aluminum alloy, the research results were compared to those with the AC2B virgin alloy, which is typical Al-Si-Cu alloy system. It was confirmed that the addition of Al-5%Ti-1%B increased the ${\alpha}$-Al nucleation temperature during solidification and decreased the grain size through cooling curve and microstructural observations of the recycled alloy. It was also found that an addition of Al-10%Sr decreased the eutectic Si growth temperature during the solidification process and modified the shape of the eutectic Si of the recycled alloy. The characteristics of fluidity, shrinkage and solidification crack strength were evaluated. For the AC2BS aluminum alloy containing 35% recycled scrap, both ${\alpha}$-Al grain refinement due to Ti-B and eutectic Si modifications due to Sr contributed to the improvement of the fluidity. The macro- shrinkage ratio increased with additions of both Al-10%Sr and Al-5%Ti-1%B and the micro-shrinkage ratio increased with the addition of Al-10%Sr but decreased with the addition of Al-5%Ti-1%B. The casting characteristics of TiB and Sr-treated AC2BS aluminum alloy containing 35% recycled scrap are similar to those of AC2B virgin alloy. The improvement of the solidification crack strength of the AC2BS aluminum alloy was possible by the reduction of the grain boundary the stress concentration through the enhancement by both ${\bullet}{\cdot}$-Al refinement and eutectic Si modification. More extensive use of the AC2BS aluminum alloy containing 35% recycled scrap can be expected in the future.

A Study on the Leak-Proof of Full Containment Type Prestressed Concrete Structure (완전 밀폐형 PC 구조물의 누설 안전성에 관한 연구)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.85-91
    • /
    • 2001
  • This paper presents safety analysis of LNG leakage in a prestressed concrete outer tank, which is strongly related on the leak checking effects of the PC structure with and without a residual compression zone based on the BS 7777 codes. The full containment type outer tank which is constructed by a prestressed concrete may be destroyed by leaked cryogenic fluids. The FE calculated results show that the total leak checking time of the PC structure with $10\%$ residual compression zone is about 9 days for $-162^{\circ}C$ liquids. But, three primary pumps in an inner tank may operate to send cryogenic fluids for 6 days, which are stored in an inner tank of $140,000m^3$ capacity This means that the prestressed concrete outer tank may be safe for $-162^{\circ}C$ cryogenic fluids leaked from the demolished inner tank.

  • PDF

Effect of Scrap Content on the Hot Tearing Property and Tensile Property of AC2BS Alloy (AC2BS합금의 열간 균열강도 및 인장특성에 미치는 스크랩 함량의 영향)

  • Kwon, Yong-Ho;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • The effects of scrap content on the hot tearing property and tensile property were investigated in AC2BS alloy. The hot tearing strengths were $16.4kgf/cm^2$, $15.2kgf/cm^2$, $14.9kgf/cm^2$ and $13.3kgf/cm^2$, respectively, under the constant solid fraction of 29.3% when the scrap contents of the specimens were 0%, 20%, 35% and 50%. In the same way, tensile strengths of the as-cast condition were $24.5kgf/mm^2$, $23.7kgf/mm^2$, $17.3kgf/mm^2$ and $16.0kgf/mm^2$, respectively, and the corresponding tensile strengths of the T6 heat treatment condition were $27.2kgf/mm^2$, $26.7kgf/mm^2$, $24.2kgf/mm^2$ and $23.9kgf/mm^2$. Hot tearing strength and tensile strength decreased as scrap content of the specimen increased. According to the evaluation of the quantitative hot tearing and tensile test results, the decrease of these strengths is due to the presence of oxide films which act as crack initiation site of the specimens. Therefore, elimination of oxide films of aluminum melt to maintain melt cleanliness is required.

The Study of Roof Design for LNG Storage Tank (LNG저장탱크 Roof 설계에 관한 연구)

  • Kim, Y.K.;Lee, K.;Hong, S.H.;Oh, B.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.448-452
    • /
    • 2001
  • Natural gas became one of the major sources of energy in Korea. As the consumption of natural gas increase, the more capacity of the LNG storage tanks is required. Recently, Korea Gas Corp.(KOGAS) has developed the technology of designing the LNG storage tanks. In this study, some of the finite element analysis has been made for designing of the roof structure of LNG storage tanks. The load case and safety code used in this study were followed by BS7777.

  • PDF

Collision Behaviors Analysis of Sandwich Concrete Panel for Outer Shell of LNG Tank (LNG외조를 구성하는 샌드위치 콘크리트 패널의 충돌거동해석)

  • Lee, Gye Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.485-493
    • /
    • 2017
  • In this study, the collision analysis of SCP(Sandwich Concrete Panel) composing the outer tank of LNG storage was performed and its collision behavior was analyzed. For the same collision energy value proposed in BS7777 code, the collision conditions are composed by using two types of missiles and various collision speeds. Nonlinear dynamic analysis models were constructed to perform numerical analysis on the various collision conditions. Also, the collision behavior was analyzed assuming that the second collision with the same collision energy occurs at the same point after the first collision. As a result of the analysis, it was found that with smaller missile and low collision speed had caused larger deformation. The collision energy dissipated in ratio of about 6: 4 in the outer steel plate and the inner filling concrete. In the results of double collision analysis, the final collisional deformation was dominated by the size of the second missile, and the amount of deformation due to the second collision was smaller than that of the first collision because of the membrane behavior of the steel plates. In the offset double collision cases, the largest deformation occurs at the secondary collision point regardless of the offset distance.