• Title/Summary/Keyword: BPN classifier

Search Result 5, Processing Time 0.02 seconds

Acoustic Emission Source Characterization and Fracture Behavior of Finite-width Plate with a Circular Hole Defect using Artificial Neural Network (인공신경회로망을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원특성과 파괴거동에 관한 연구)

  • Rhee, Zhang-Kyu;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.170-177
    • /
    • 2009
  • The objective of this study is to evaluate an acoustic emission (AE) source characterization and fracture behavior of the SM45C steel by using back-propagation neural network (BPN). In previous research Ref. [8] about k-nearest neighbor classifier (k-NNC) continuity, we used K-means clustering method as an unsupervised learning method for obtaining multi-variate AE main data sets, such as AE counts, energy, amplitude, risetime, duration and counts to peak. Similarly, we applied k-NNC and BPN as a supervised learning method for obtaining multi-variate AE working data sets. According to the error of convergence for determinant criterion Wilk's ${\lambda}$, heuristic criteria D&B(Rij) and Tou values are discussed. As a result, in k-NNC before fracture signal is detected or when fracture signal is detected, showed that produce some empty classes in BPN. And we confirmed that could save trouble in AE signal processing if suitable error of convergence or acceptable encoding error give to BPN.

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • Oh, Kyong-Joo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

Artificial Neural Networks for Interest Rate Forecasting based on Structural Change : A Comparative Analysis of Data Mining Classifiers

  • Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.641-651
    • /
    • 2003
  • This study suggests the hybrid models for interest rate forecasting using structural changes (or change points). The basic concept of this proposed model is to obtain significant intervals caused by change points, to identify them as the change-point groups, and to reflect them in interest rate forecasting. The model is composed of three phases. The first phase is to detect successive structural changes in the U. S. Treasury bill rate dataset. The second phase is to forecast the change-point groups with data mining classifiers. The final phase is to forecast interest rates with backpropagation neural networks (BPN). Based on this structure, we propose three hybrid models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported model, (2) case-based reasoning (CBR)-supported model, and (3) BPN-supported model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the prediction ability of hybrid models to reflect the structural change.

  • PDF

An Integrated Approach Using Change-Point Detection and Artificial neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.235-241
    • /
    • 2000
  • This article suggests integrated neural network models for the interest rate forecasting using change point detection. The basic concept of proposed model is to obtain intervals divided by change point, to identify them as change-point groups, and to involve them in interest rate forecasting. the proposed models consist of three stages. The first stage is to detect successive change points in interest rate dataset. The second stage is to forecast change-point group with data mining classifiers. The final stage is to forecast the desired output with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. This article is then to examine the predictability of integrated neural network models for interest rate forecasting using change-point detection.

  • PDF

Design and estimation of a sensing attitude algorithm for AUV self-rescue system

  • Yang, Yi-Ting;Shen, Sheng-Chih
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.157-177
    • /
    • 2017
  • This research is based on the concept of safety airbag to design a self-rescue system for the autonomous underwater vehicle (AUV) using micro inertial sensing module. To reduce the possibility of losing the underwater vehicle and the difficulty of searching and rescuing, when the AUV self-rescue system (ASRS) detects that the AUV is crashing or encountering a serious collision, it can pump carbon dioxide into the airbag immediately to make the vehicle surface. ASRS consists of 10-DOF sensing module, sensing attitude algorithm and air-pumping mechanism. The attitude sensing modules are a nine-axis micro-inertial sensor and a barometer. The sensing attitude algorithm is designed to estimate failure attitude of AUV properly using sensor calibration and extended Kalman filter (SCEKF), feature extraction and backpropagation network (BPN) classify. SCEKF is proposed to be used subsequently to calibrate and fuse the data from the micro-inertial sensors. Feature extraction and BPN training algorithms for classification are used to determine the activity malfunction of AUV. When the accident of AUV occurred, the ASRS will immediately be initiated; the airbag is soon filled, and the AUV will surface due to the buoyancy. In the future, ASRS will be developed successfully to solve the problems such as the high losing rate and the high difficulty of the rescuing mission of AUV.