An implementation of modified stereo matching using efficient belief propagation (BP) algorithm is presented in this paper. We do recommend the use of the simple sobel, prewitt edge operator. The application of B band sobel edge operator over image demonstrates result with somewhat noisy (distinct border). When we adopt the only MRF + BP algorithm, however, borders cannot be distinguished due to that the message functions in the BP algorithm is just the mechanism which passes energy data to the only large gap of each Message functions In order to address the abovementioned disadvantageous phenomenon, we use the sobel edge operator + MRF + BP algorithm to distinguish the border that is located between the similar message data. Using edge information, the result shows that our proposed process diminishes the propagation of wrong probabilistic information. The enhanced result is due to that our proposed method effectively reduced errors incurred by ambiguous scene properties.
Journal of information and communication convergence engineering
/
제13권2호
/
pp.123-131
/
2015
Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.
본 논문에서는 신경망의 초기 파라미터(가중치, 바이어스) 값을 최적화 시키는 GA-BP(Genetic Algorithm-Backpropagation Network) 혼합 알고리즘을 이용하여 얼굴을 인식하는 방법을 제안하였다. 입력 영상의 각 픽셀들을 신경망의 입력으로 사용하고 고정 소수점 실수값으로 이루어진 신경망의 초기 파리미터 값은 유전자 알고리즘의 개체로 사용하기 위해 비트 스트링으로 변환한다. 신경망의 오차가 최소가 되는 값을 적합도로 정의한 뒤 새롭게 정의된 적응적 재학습 연산자를 이용하여 이를 평가해 최적의 진환된 신경망을 구성한 뒤 얼굴을 인식하는 실험을 하였다. 실험 결과 학습 수렴 속도의 비교에서는 오류 역전과 알고리즘 단독으로 실행한 수렴 속도보다 제안된 알고리즘의 수렴 속도가 향상된 결과를 보였고 인식률에서 오류 역전과 알고리즘 단독으로 실행한 방법보다 2.9% 향상된 것으로 나타났다.
It is very important to make accurate forecast of wind power because of its indispensable requirement for power system stable operation. The research is to predict wind power by chaos and BP artificial neural networks (CBPANNs) method based on genetic algorithm, and to evaluate feasibility of the method of predicting wind power. A description of the method is performed. Firstly, a calculation of the largest Lyapunov exponent of the time series of wind power and a judgment of whether wind power has chaotic behavior are made. Secondly, phase space of the time series is reconstructed. Finally, the prediction model is constructed based on the best embedding dimension and best delay time to approximate the uncertain function by which the wind power is forecasted. And then an optimization of the weights and thresholds of the model is conducted by genetic algorithm (GA). And a simulation of the method and an evaluation of its effectiveness are performed. The results show that the proposed method has more accuracy than that of BP artificial neural networks (BP-ANNs).
LT 부호에 대해 BP 복호 알고리즘은 가장 빠른 복호 방법 중 하나로 알려져 있다. 그러나 BP 알고리즘은 대부분의 LT 부호를 복호하는데 있어서 많은 오버헤드를 요구하며 특히 짧은 길이의 LT 부호에 대해서는 과다한 오버헤드가 소요된다. 본 논문에서는 오버헤드를 줄이기 위해 1-차수의 패킷을 탐색할 수 있는 방법을 제시하고 이를 이용한 개선된 BP 복호 알고리즘을 제안하였다. 제안된 복호 알고리즘은 기존의 BP 알고리즘에 비해 같은 복호 복잡도를 유지하면서도 더 적은 오버헤드를 가짐을 알 수 있었다.
Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
KIEE International Transactions on Electrophysics and Applications
/
제5C권3호
/
pp.138-142
/
2005
In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.
Digital fountain codes are record-breaking codes for erasure channels. They have many potential applications in both wired and wireless communications. Most existing digital fountain codes operate over binary fields using an iterative belief-propagation (BP) decoding algorithm. In this paper, we propose a new iterative decoding algorithm for both binary and nonbinary fields. The basic form of our proposed algorithm considers both degree-1 and degree-2 check nodes (instead of only degree-1 check nodes as in the original BP decoding scheme), and has linear complexity. Extensive simulation demonstrates that it outperforms the original BP decoding scheme, especially for a small number of source packets. The enhanced form of the proposed algorithm combines the basic form of the algorithm and a guess-based algorithm to further improve the decoding performance. Simulation results demonstrate that it can provide better decoding performance than the guess-based algorithm with fewer guesses, and can achieve decoding performance close to that of the maximum likelihood decoder at a much lower decoding complexity. Last, we show that our nonbinary scheme has the potential to outperform the binary scheme when choosing suitable degree distributions, and furthermore it is insensitive to the size of the Galois field.
스테레오 매칭은 두 영상의 차이를 이용하여 거리를 추정하는 연구 분야로 성능 개선과 함께 처리속도 향상을 위한 연구가 계속되고 있다. 본 논문에서는 계층적 Belief Propagation(BP) 알고리즘을 개선하여 기존의 BP에서의 수렴구간을 메시지 맵으로 만들고 이를 이용하여 처리속도를 향상시키는 Plane-converging BP 알고리즘을 제안한다. 또한 GPU 아키텍쳐인 Nvidia의 CUDA를 이용하여 다수의 계산을 병렬화 하고 이를 동시에 처리하여 실시간 어플리케이션에 적합한 스테레오 매칭 기법을 개발하였다. Plane-converging BP 알고리즘은 기존의 계층적 BP 알고리즘과 유사한 에러율을 가지면서 약 2.7배의 속도 향상을 이루었다.
As 4G mobile communication systems require high transmission rates with reliability, the need for efficient error correcting code is increasing. In this paper, a novel LDPC (Low Density Parity Check) decoder is introduced. The LDPC code is one of the most popular error correcting codes. In order to improve performance of the LDPC decoder, we use SNR (Signal-to-Noise Ratio) estimation results to adjust coefficients of modified UMP-BP (Uniformly Most Probable Belief Propagation) algorithm which is one of widely-used LDPC decoding algorithms. An advantage of Modified UMP-BP is that it is amenable to implement in hardware. We generate the optimal values by simulation for various SNRs and coefficients, and the values are stored in a look-up table. The proposed decoder decides coefficients of the modified UMP-BP based on SNR information. The simulation results show that the BER (Bit Error Rate) performance of the proposed LDPC decoder is better than an LDPC decoder using a conventional modified UMP-BP.
함수근사는 과학과 공학분야에서 광범위하게 응용된다. 다층 전방향 신경망은 비선형 함수근사를 위한 도구로서 제안되어져 왔으며, 다층 신경망을 학습시키기 위한 학습 알고리즘으로 역전파 알고리즘이 널리 이용되어져 왔다. 그러나 이상치(outlier) 를 포함한 학습자료가 존재할 때에는 학습되는 함수는 존재하는 모든 자료 사이를 보간 하므로 이상치가 있는 자료의 위치까지도 보간 하여, 원하지 않은 구조를 파악하게 된다. 따라서 이상치의 영향을 최소화 시키기 위해 본 논문에서는 로버스트 에너지 함수를 유도하여 개량된 로버스트 역전파 알고리즘을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.