• Title/Summary/Keyword: BP

Search Result 4,493, Processing Time 0.028 seconds

The Effect of Platelets on Endothelin Production in Bovine Pulmonary Artery Endothelial Cells (혈소판이 소 폐동백 내피세포의 Endothelin 생산에 미치는 효과)

  • Lee, Sang-Do;Shim, Tae-Sun;Kwon, Seog-Woon;Ryu, Jin-Sook;Lee, Jae-Dam;Lim, Chae-Man;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.5
    • /
    • pp.1114-1124
    • /
    • 1997
  • Background : Endothelin(ET) is a very potent vasoconstrictive peptide produced by endothelial cells of pulmonary artery. The endothelin level was increased in plasma of primary pulmonary hypertension and acute pulmonary thromboembolism and it was suggested that the endothelin might do a critical role in the cardiopulmonary dysfunction in these two conditions. But the exact mechanism of increase of ET has not been known. In these two conditions, platelet activation and thrombosis are the main pathophysiologic findings. So there is a possibility that the platelet might stimulate endothelin secretion from endothelial cells. Therefore, we performed this study to evaluate the role of platelet and its mediators on endothelin production in bovine pulmonary artery endothelial(BPAE) cells. Method : Bovine pulmonary artery endothelial cells, ATCC certified cell line 209, were cultured and treated with human platelets($10^6{\sim}10^8/ml$), thrombin (0.1~10u/ml), TGF-${\beta}1$(1~100uM), serotonin(1~100uM), and endotoxin(1ug/ml) in a final volume of 500ul for 18 hours. Levels of ir(immunoreactive)-ET in each conditioned medium were measured by a radioimmunoassay specific for ET. Result : The increase of ir-ET levels was platelet number and time dependent over 18 hours. When washed human platelets were added($10^8/ml$), the ir-ET levels were significantly higher than that of control(p<0.05) at 8 and 18 hours after culture. Subthreshold concentration of platelets($10^7/ml$) coincubated with endotoxin(1ug/ml) or subthreshold dose of thrombin(0.1u/ml) stimulated ir-ET secretion from BPAE cells significantly(p<0.05) compared with control. Thrombin(1ug/ml, 10ug/ml) and TGF-${\beta}1$(100pM, 1000pM) significantly increased ir-ET secretion from BP AE cells(p<0.05) compared with control, but serotoin(1~100uM) and endotoxin(1ug/ml) did not stimulate the ir-ET secretion. Conclusions : Platelets stimulate endothelin secretion from bovine pulmonary artery endothelial cells. The mechanism of increase of endothelin secretion seems to be a stimulation by platelet itself or by mediators, such as TGF-${\beta}1$, secreted from activated platelets. And, in this study, the priming effect of platelets on endothelin secretion from BPAE cells could be another possibility.

  • PDF

Evaluation of Multiple System Atrophy and Early Parkinson's Disease Using $^{123)I$-FP-CIT SPECT ($^{123)I$-FP-CIT SPECT를 이용한 다중계위축증 및 조기 파킨슨병에서의 평가)

  • Oh, So-Won;Kim, Yu-Kyeong;Lee, Byung-Chul;Kim, Bom-Sahn;Kim, Ji-Sun;Kim, Jong-Min;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • Purpose: We investigated quantification of dopaminergic transporter (DAT) and serotonergic transporter (SERT) on $^{123}I$-FP-CIT SPECT for differentiating between multiple systemic atrophy (MSA) and idiopathic Parkinson's disease (IPD). Materials and Methods: N-fluoropropyl-$2{\beta}$-carbomethoxy-$3{\beta}$-4-[$^{123}I$]-iodophenylnortropane SPECT ($^{123}I$-FP-CIT SPECT) was performed in 8 patients with MSA (mean age: $64.0{\pm}4.5yrs$, m:f=6:2), 13 with early IPD (mean age: $65.5{\pm}5.3yrs$, m:f=9:4), and 12 healthy controls (mean age: $63.3{\pm}5.7yrs$, m:f=8:4). Standard regions of interests (ROls) of striatum to evaluate DAT, and hypothalamus and midbrain for SERT were drawn on standard template images and applied to each image taken 4 hours after radiotracer injection. Striatal specific binding for DAT and hypothalamic and midbrain specific binding for SERT were calculated using region/reference ratio based on the transient equilibrium method. Group differences were tested using ANOVA with the postHoc analysis. Results: DAT in the whole striatum and striatal subregions were significantly decreased in both patient groups with MSA and early IPD, compared with healthy control (p<0.05 in all). In early IPD, a significant increase in the uptake ratio in anterior and posterior putamen and a trend of increase in caudate to putamen ratio was observed. In MSA, the decrease of DAT was accompanied with no difference in the striatal uptake pattern compared with healthy controls. Regarding the brain regions where $^{123}I$-FP-CIT binding was predominant by SERT, MSA patients showed a decrease in the binding of $^{123}I$-FP-CIT in the pons compared with controls as well as early IPD patients (MSA: $0.22{\pm}0.1$ healthy controls: $0.33{\pm}0.19$, IPD: $0.29{\pm}0.19$), however, it did not reach the statistical significance. Conclusion: In this study, the differential patterns in the reduction of DAT in the striatum and the reduction of pontine $^{123}I$-FP-CIT binding predominant by SERT could be observed in MSA patients on $^{123}I$-FP-CIT SPECT. We suggest that the quantification of SERT as well as DAT using $^{123}I$-FP-CIT SPECT is helpful to differentiate parkinsonian disorders in early stage.

Medical Information Dynamic Access System in Smart Mobile Environments (스마트 모바일 환경에서 의료정보 동적접근 시스템)

  • Jeong, Chang Won;Kim, Woo Hong;Yoon, Kwon Ha;Joo, Su Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • Recently, the environment of a hospital information system is a trend to combine various SMART technologies. Accordingly, various smart devices, such as a smart phone, Tablet PC is utilized in the medical information system. Also, these environments consist of various applications executing on heterogeneous sensors, devices, systems and networks. In these hospital information system environment, applying a security service by traditional access control method cause a problems. Most of the existing security system uses the access control list structure. It is only permitted access defined by an access control matrix such as client name, service object method name. The major problem with the static approach cannot quickly adapt to changed situations. Hence, we needs to new security mechanisms which provides more flexible and can be easily adapted to various environments with very different security requirements. In addition, for addressing the changing of service medical treatment of the patient, the researching is needed. In this paper, we suggest a dynamic approach to medical information systems in smart mobile environments. We focus on how to access medical information systems according to dynamic access control methods based on the existence of the hospital's information system environments. The physical environments consist of a mobile x-ray imaging devices, dedicated mobile/general smart devices, PACS, EMR server and authorization server. The software environment was developed based on the .Net Framework for synchronization and monitoring services based on mobile X-ray imaging equipment Windows7 OS. And dedicated a smart device application, we implemented a dynamic access services through JSP and Java SDK is based on the Android OS. PACS and mobile X-ray image devices in hospital, medical information between the dedicated smart devices are based on the DICOM medical image standard information. In addition, EMR information is based on H7. In order to providing dynamic access control service, we classify the context of the patients according to conditions of bio-information such as oxygen saturation, heart rate, BP and body temperature etc. It shows event trace diagrams which divided into two parts like general situation, emergency situation. And, we designed the dynamic approach of the medical care information by authentication method. The authentication Information are contained ID/PWD, the roles, position and working hours, emergency certification codes for emergency patients. General situations of dynamic access control method may have access to medical information by the value of the authentication information. In the case of an emergency, was to have access to medical information by an emergency code, without the authentication information. And, we constructed the medical information integration database scheme that is consist medical information, patient, medical staff and medical image information according to medical information standards.y Finally, we show the usefulness of the dynamic access application service based on the smart devices for execution results of the proposed system according to patient contexts such as general and emergency situation. Especially, the proposed systems are providing effective medical information services with smart devices in emergency situation by dynamic access control methods. As results, we expect the proposed systems to be useful for u-hospital information systems and services.