• Title/Summary/Keyword: BOD reduction

Search Result 189, Processing Time 0.026 seconds

Mesophilic and Thermophilic Anaerobic Digestion of Swine Manure (中溫및 高溫嫌氣性消化에 의한 豚糞處理)

  • Kim, Nam Cheon;Min, Kyung Sok;Chung, Paul Gene
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.1
    • /
    • pp.107-117
    • /
    • 1984
  • This study was made to evaluate the temperature effects on anaerobic digestion of swine manure. A laboratory single-stage, high-rate, anaerobic digester was operated at 10, 20 and 30 day's HRT at the temperature of 35$\circ$C or 55$\circ$C. The conclusions from this study are as follows: (1) COD and BOD reductions were similar in both the mesophilic and thermophilic digestions. (2) With thermophilic digestion, volatile reduction increased to 67%, as compared with 60% of mesophilic digestion. With thermophilic digestion, the pH increased to 8.5 as compared with 8.0 of mesophilic digestion. With thermophilic digestion, the concentration of volatile acid increased to 763 mg/l, as compared with 250 mg/l of mesophilic digestion. While the gas was produced by mesophilic digestion at 0.74m$^3$/kg of VS fed, it increased to 0.87 m$^3$/kg VS fed by thermophilic digestion. The refractory VS was about 25% of the infiuent VS.

  • PDF

Small Device for Reduction of Non-Point Pollution in Road Bridge (도로교 비점오염원의 저감용 소형장치)

  • Kim, Chi-Gon;Park, Chang-Soon;Kim, Gil-Tai;Lee, Hyo-Won;Kim, Si-Chul;Lee, Jong-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.131-132
    • /
    • 2014
  • 본 논문은 도로에 설치된 교량 및 사람들의 친수 공간 내 접근성을 필요로 하는 곳에 설치되는 확장형 인도교에서 발생되는 비점오염원을 중점적으로 경감시키기 위한 소규모 저감장치의 실험적 연구이다. 이는 강수에 의한 오염물질의 장치 내 유입 침전 흡착 여과를 통해 수질을 정화 배수시키는 공정으로 이루어진다. 소형 장치에 대한 성능과 제거 효율 및 통수능 실험은 BOD, COD, 부유물질, T-N, T-P 등 5개 항목에 대해 분석하였으며, 이들 모든 항목에서 현저히 감소하는 것으로 나타났다.

  • PDF

Water Quality Prediction and Forecast of Pollution Source in Milyanggang Mid-watershed each Reduction Scenario (밀양강 중권역 오염부하 전망 및 삭감 시나리오별 하류 수질예측)

  • Yu, Jae-Jeong;Yoon, Young-Sam;Shin, Suk-Ho;Kwon, Hun-Gak;Yoon, Jong-Su;Jeon, Young-In;Kang, Doo-Kee;Kal, Byung-Seok
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.589-598
    • /
    • 2011
  • Milyanggang mid-watershed is located in downstream of Nakdong river basin. The pollutants from that watershed have an direct effect on Nakdong river water quality and it's control is important to manage a water quality of Nakdong river. A target year of Milyanggang mid-watershed water environment management plan is 2013. To predict a water quality at downstream of Milyang river, we have investigated and forecasted the pollutant source and it's loading. There are some plan to construction the sewage treatment plants to improve the water quality of Milyang river. Those are considered on predicting water quality. As results, it is shown that the population of Milyanggang mid-watershed is 131,857 and sewerage supply rate is 62.2% and the livestock is 1,775.300 in 2006. It is estimated that the population is 123,921, the sewerage supply rate is 75.5% in 2013. The generated loading of BOD and TP is 40,735 kg/day and 2,872 kg/day in 2006 and discharged loading is 11,818 kg/day and 722 kg/day in 2006 respectively. Discharged loadings were forecasted upward 1.0% of BOD and downward 2.7% of TP by 2013. The results of water quality prediction of Milyanggang 3 site were 1.6 mg/L of BOD and 0.120 mg/L of TP in 2013. It is over the target water quality at that site in 2015 about 6.7% and 20.0% respectively. Consequently, there need another counterplan to reduce the pollutants in that mid-watershed by 2015.

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

Estimation of Contribution Ratio and Community Sewerage Treatment Efficiency by using Advanced Sewage Treatment in the Basin of Hongcheon-river (홍천강 유역의 하수고도처리를 적용한 마을하수처리 효율 및 기여율 평가)

  • Park, Soo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3570-3576
    • /
    • 2013
  • This paper calculated advanced sewage treatment efficiency and reduction pollution loads to estimation contribution ratio of for community sewerage in Hongcheon-gun County. The A2/O and SBR methods showed overall high treatment efficiency of 95% and 94% respectively, and SS was 80%. On the other hand, T-N and T-P showed relatively low processing efficiency of 56% and 60% respectively, but it was observed that SS showed high 96% in the MBR method. Next, by the result of yearly water change analysis on water quality of Hongcheon River which is the discharge river of community sewerage, it was observed that water quality was greatly deteriorated by COD, T-N and T-P. However, installation and operation of community sewerage showed high pollution load reduction in general water quality item by more than 80%, and in T-N and T-P by 58% and 68% respectively. It is expected that community sewerage will greatly contribute in water quality improvement of Hongcheon River.

Evaluation for Non-Point Sources Reduction Effect by Vegetated Ridge and Silt Fence (식생밭두렁과 실트펜스를 이용한 밭 비점오염 저감효과 평가)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.129-137
    • /
    • 2015
  • The objective of this study was to test the non-point source pollution (NPS) control by the vegetated ridge and silt fence through field monitoring. The experiment plots were established with three sizes which are 5 m width by 22 m length with 8 %, 3 % slope and 15m width by 15 m length with 6 % slope. Flumes with the floating type stage gages were installed at the outlet of each plot to monitor the runoff. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Water quality samples were monitored during the heavy rainfall occurred. The amount of rainfall from 4 monitored events ranged from 27.6 mm to 130 mm. The runoff reduction rate could vary depending on slope, soil, crop growth condition, rainfall amount, rainfall intensity, antecedent moisture condition, and many other factors. The runoff from vegetated ridge and silt fence treatment plots was 24.05 % and -8.28 % lower than that from control plot, respectively. The monitoring results showed that the average pollution loads reduced by vegetated ridge compared to control were BOD 36.62~53.60 %, SS 40.41~73.71 %, COD 39.34~56.41 %, DOC 49.08~53.67 %, TN 26.74~67.23 %, and TP 52.72~91.80 %; by silt fence compared to control were SS 41.73 %, COD 1.93 %, and TN 2.38 %. The paired t-test result indicated that the vegetated ridge and silt fence were statistically significant effect in SS load reduction, with a 5 % significant level. Monitored results indicated that vegetated ridge and silt fence were both effective to reduce the pollutant from the field surface runoff.

Evaluation of SRI Water Management on the Reduction of Irrigation Supply and NPS Pollution in Paddies (SRI 물관리 방법이 논의 관개용수량과 비점오염원 저감에 미치는 영향)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Yoon, Kwangsik;Choi, Dongho;Kim, Yongseok;Ryu, Jichul;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Monitored data (rainfall runoff and water quality) from 4 different paddy sites over 3 years were compared to analyze the effect of irrigation water management on irrigation supply and rainfall runoff quality in Korea. The system of rice intensification water management was adopted at one site (SRI) while the conventional water management method was used for rice culture at the other three sites (CT, SD and HD). The soil texture at SRI, CT and SD was sandy loam while that at HD was silt loam. The average reduction of irrigation supply at SRI compared with CT, SD and HD during the 3 years studied was 49%, 51% and 55%, respectively. The average event mean concentration (EMC) at SRI compared with that at CT, SD and HD was decreased by 35% (BOD), 44% (COD), 47% (SS), 19% (TN) and 38% (TP). The correlation between rainfall runoff and the measured non-point source (NPS) pollutants was very good in general. The comparison revealed that SRI water management significantly reduced both irrigation supply and EMC in rainfall runoff. Paddy NPS pollution was closely related to factors that induce runoff such as rainfall and irrigation supply. It was concluded that SRI management could be an effective and practical option to cope with both water shortage due to climate change and water quality improvement in rural watersheds. However, further studies are recommended in large irrigation districts for use in the development and implementation of NPS pollution policies since the data was collected from field sized paddies.

Purification and Utilization of Industrial Waste Water Using Microorganism -(Part 1) Isolation of the yeast strain from organic waste water and its use on waste water treatment- (산업폐수의 처리 및 이용에 관한 연구 -(제 1 보) 효모균주의 분리와 이에 의한 유기성폐수의 처리에 관하여-)

  • Lee, Kang-Heup;Yim, Sung-Sam;Park, Tai-Won
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.228-235
    • /
    • 1977
  • The yeast strain was isolated from food industry waste water and its identification and biological characteristics were investigated. The optimum condition for cultivations and its activities for the reduction of B.O.D. on the food industry waste water were also confirmed. The results are as follows; 1) The isolated was identified as Candida curvata. 2) Candida curvata grew well in all of the experimented media, so and it can be regarded as a useful strain in the treatment of food industry waste water. 3) There was only a slight difference in the induction period between sterilized cultivation and unsterilized cultivation. But in the ice cream waste water, the period was considerably longer in unsterilized cultivation. 4) Specific rate of growth of Candida curvata in sugar waste water was 0.50/hr, ice cream waste water 0.50/hr, and beer waste water 1.0/hr. 5) Increasing of innoculum reduced the induction period in unsterilized cultivation. 6) The amount of dried yeast from sugar waste water were $175mg/{\ell}$, ice cream waste water $628mg/{\ell}$, and beer waste water $857mg/{\ell}$. Crude protein content in the dried yeast from sugar waste water were 52%, ice cream waste water 54%, and beer waste water 54%. 7) The rate of BOD reduction in sugar waste water were 49%, ice cream waste water 80%, and beer waste water 64%.

  • PDF

Evaluation of the Performance of Woodchip-filled Infiltration Trench Treating Stormwater from Highway (고속도로 강우유출수 처리를 위한 우드칩 충진 침투도랑의 성능평가)

  • Park, Kisoo;Kang, Heeman;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.183-193
    • /
    • 2016
  • In this study, design and performance of infiltration trench using woodchip as media for treating stormwater from highway were examined through field monitoring. Average reduction efficiency for TSS, COD, BOD, TN, and TP was 88%, 94%, 85%, 80%, and 75% respectively, which is similar to values reported by other studies and design manuals even though direct comparison is not possible due to different monitoring and design conditions. Mean field infiltration rate estimated by measuring the change of water depth inside the observation well was about 40mm/hr, and the time taken for complete infiltration was about 0.83days, which corresponds well with design criteria recommended by MOE guidelines in Korea. In addition, according to analysis of infiltration rate and reduction efficiency, effective rainfall depth applied for determining water quality volume(WQv), 5mm was found to be properly established as design criteria. Woodchip must be considered and included as an alternative media together with crushed rock and gravel into the design guidelines because it has more advantages in terms of weight, porosity, cost, and easiness of management than other media materials.

Selection of Appropiate Plant Species of VFS (Vegetative Filter Strip) for Reducing NPS Pollution of Uplands (밭 비점오염저감을 위한 초생대 적정 초종 선정)

  • Choi, Kyung-Sook;Jang, Jeong-Ryeol
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.973-983
    • /
    • 2014
  • This study focused on the selection of appropriate plant species of VFS (vegetative fiter strips) and the assessment of VFS effects for reducing NPS (non-point source) pollution from uplands. The experimental field was constructed with 1 control and 6 treated plots in the upland area of $1,500m^2$ with 5% slope which is located in Gunwi-gun, Gyeongbuk province. Six vegetation including Chufa, Common crabgrass, Barnyard grass, Turf grass, Tall fescue, Kenturky bluegrass, were applied to install VFS systems during the study period from June 2011 to Dec. 2012. The results of this study showed that 6.1~77.8% in runoff and 15.6~90.3% in TS, 49.9~96.6% in T-P, and 6.7~91.1% in T-N were reduced from the VFS treated plots. Generally high reduction effects were observed from TS, T-P, T-N, and SS, while BOD, TOC, and $NO_3^-$ showed low reductions. The best vegetation type was Turf grass showing higher reduction effects of NPS pollutions and having relatively easier maintenance efforts compared to other vegetations selected in this study. Based on these results, VFS technique found to be an effective management practice for reducing agricultural NPS pollutions in Korean upland conditions. Further study needs to be performed through various field experiments with long term monitoring in order to develop a design manual of VFS system for practical applications.