• Title/Summary/Keyword: BOD/COD removal

Search Result 291, Processing Time 0.028 seconds

A Study on Characteristics of Aerobic Liquid-Composting using a Micro Air Diffusion and a Mixer System (미세기포와 교반을 이용한 호기성 액비특성에 관한 연구)

  • Gu, Bon-Woo;Oh, Dae-Min;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1354-1360
    • /
    • 2010
  • The purpose of this study is to analyze the behavior of swine slurry wastewater from bogen, in the treatment of Aerobic Liquid-Composting treatment by Aerobic Liquid-Composting using a mixer and Micro Air Diffusion pH level was at the beginning and its rise was seemingly related to VFA. It appears that removal of BOD and COD are more effective by Aerobic than by Anaerobic. In terms of removal efficiency, it shows 70.9% of BOD and 39% of COD in M.A+Mix and 67.8% of BOD and 19% of COD in M.A. $NH_3-N$ decreases in all conditions, which is caused by both the characteristic of nitrogen and the rise of pH. $NO_3-N$ increases in all conditions. It is judged that the accumulation of $NO_3-N$ affects the reduction of the ratio of denitrification. In the result of the analysis of Manure in swine slurry of liquified fertilizer ingredients, content of Manure in swine slurry of liquified fertilizer ingredients in aerobic conditions (M.A+Mix) is higher than anaerobic conditions.

Advanced Sewage Treatment by the Modified SBR(Sequencing Batch Reactor) Process (변형 연속회분식 반응기를 이용한 오수의 고도처리)

  • 김병군;서인석;홍성택;정위득
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2002
  • This study was performed to treat a sewage at the upper stream of dam using modified sequencing batch reactor, During the operating period, average $COD_{cr}$, removal efficiency was about 85% but average T-N and ${PO_4}^{3-}-P$ removal efficiencies were 43% and 30% respectively. Because the organic matter was very low compared with nitrogen and phosphorous in influent($BOD_{5}/{NH_4}^{+}-N{\;}={\;}2,{\;}BOD_{5}/{PO_4}^{3-}-P{\;}={\;}15.6$), nitrogen and phosphorus removal efficiency was relatively low. Average nitrogen removal efficiency was 50 % at $10^{\circ}C$ or above and it was 36 % at $10^{\circ}C$ or below. As reactor was located in outdoor without any thermostat, temperature decreased at least $2.4^{\circ}C$ in the winter season. Therefore, if we would apply this modified sequencing batch reactor to sewage which concentration of organic matter was very low compared with nitrogen and phosphorous, we have to addition of external carbon and installation of any thermostat.

Characteristics of sewage Treatment by using Indirectly Aerated Submerged Biofilter(INSUB) (간접폭기형 침적생물여과장치(INSUB)를 이용한 오수처리 특성)

  • Huh, Mock;Kang, Jin-Yuong;Kim, Gwang-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.125-131
    • /
    • 2003
  • This study was carried out to develop INSUB(Indirected Aerated Submerged Biofilter) which can remove organics, nitrogen and phosphorus with an advanced treatment system. The results were as followed in laboratory model experiment. As for treatment of sewage, when economical efficiency was considered in practice, the highest removal efficiency was at 18hr of HRT, 1.017m/hr of superficial velocity and 40% of media packing ratio. Each removal efficiency for $COD_{cr}$, $COD_{Mn}$, $BOD_5$, T-N, and T-P was 90.6, 85.3, 95.0, 52.3 and 56.8%. To remove the nitrogen and phosphorus With high efficiency, first of all, denitrification have to be completed, then uptake of phosphorus have to completed. Therefor, mixture of anoxic and aerobic reactor was necessary for the high removal efficiency of nitrogen and phosphorus in INSUB.

  • PDF

The Effects of Light Intensity, Inoculum Size, and Cell Immobilisation on the Treatment of Sago Effluent with Rhodopseudomonas palustris Strain B1

  • Ibrahim, Shaliza;Vikineswary, S.;Al-Azad, Sujjat;Chong, L.L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.377-381
    • /
    • 2006
  • A study was carried out to determine a suitable light intensity and inoculum size for the growth of Rhodopseudomonas palustris strain B1. The pollution reduction of sago effluent using free and immobilised R. palustris cells was also evaluated. The growth rate in glutamatemalate medium was highest at 4 klux compared to 2.5 and 3 klux. The optimal inoculum size was 10% (v/v). Both the COD and BOD of the sago effluent were reduced by 67% after three days of treatment. The difference in biomass production or BOD and COD removal with higher inoculum sizes of 15 and 20% was minimal. This could be attributed to limited nutrient availability in the substrate. The use of immobilised cells of R. palustris reduced the pollution load 10% less compared to pollution reduction by free cells. Hence, there was no significant difference in using free or immobilised cells for the treatment of sago effluent.

Effect of Coagulant addition on Nutrient Removal Efficiency in a Submerged Membrane Bioreactor (응집제의 첨가에 따른 Membrane bioreactor 의 고도처리 효율 연구)

  • Park, Jong-Bu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.235-241
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in the submerged membrane bioreactor by addition of alum directly into aerobic tank. Membrane bioreactor consists of three reactors such as two intermittent anaerobic tanks and the aerobic tank with hollow fiber membrane. The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the membrane bioreactor were 94.0%, 99.1%, 99.9%, 66.9%, and 58.9%, respectively. In addition, The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the membrane bioreactor with alum addition were 93.4%, 99.0%, 99.9%, 63.2%, and 96.8%, respectively. There was little difference between them on the nutrient removal efficiencies except phophorus removal. The estimated sludge production, specific denitrification rate, specific nitrification rate and phosphorus removal content on the membrane bioreactor were 1.76 kgTSS/d, $0.055mgNO_3-N/mgVSS{\cdot}d$, $0.031mgNH_4-N/mgVSS{\cdot}d$, and 0.095 kgP/d, respectively. And The estimated sludge production, specific denitrification rate, specific nitrification rate and phosphorus removal content on the membrane bioreactor with alum addition were 2.90 kgTSS/d, $0.049mgNO_3-N/mgVSS{\cdot}d$, $0.030mgNH_4-N/mgVSS{\cdot}d$, and 0.160 kgP/d, respectively. The alum content added was 1.7 molAl/molP on an average. The increasing ratio of tran-membrane pressure on the membrane bioreactor was $0.0056kgf/cm^2{\cdot}compared$ to $0.0033kgf/cm^2{\cdot}d$ on the membrane bioreactor with alum addition. There was a slightly reduction effect on membrane fouling by alum addition.

Integrated System of RBC-lime Precipiatation for Simultaneous Removal of Organics and Nutrients (회전원판공정과 화학침전공정 조합을 이용한 유기물과 질소*인의 동시제거)

  • 박종안;허준무;손부순
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.132-140
    • /
    • 1998
  • Laboratory-scale experiments were conducted using a three-stage rotating biological contactor unit followed by lime precipitation and sedimentation with effluent recycle to the first stage. The purpose of this study was to evaluate the effects of hydraulic loadings of 0.031-0.076 $m^3/m^2/d and recycle ratio of 1 to 3 on the simultaneous removal of organics and nutrients from domestic wastewater. Lime was added to maintain pH of 10.4-11.0 in the coagulation-flocculation reactor. Results showed that the highest nitrogen removal rate of 70.5% occurred at the lower hydraulic loading of 0.031 $m^3/m^2/d at a recirculation rate of 300%, and similarly, highest nitrification occurred at the same hydraulic loading and recycle ratio. Concentration of ammonia nitrogen in the effluent was less than 1 mg/l at the same operating conditions for higher nitrogen removal. Whereas, high BOD and COD removal was observed at hydraulic loading rate of 0.054 $m^3/m^2/d, and high removal of organic matter was evident from the consistent low COD and BOD value. Results obtained from the operating condition of higher loading rate, 300% of recycle rate showed the highest removals. Increasing in recycle rate and hydraulic loading rate increased the volatile solids fraction of the sludges generated to the extent of 47% at 0.076 $m^3/m^2/d hydraulic loading and 300% recirculation rate. Since pH in the flocculator was maintained at the pH of 10.4-11.0, above 90% removal of phosphorus was obtained. Average concentration of suspended solids was always maintained over 40 mg/l in the effluent. Therefore an RBC unit operating at a hydraulic loading near 0.031 $m^3/m^2/d with a recycle rate of 300% is a viable and feasible alternate conditions to produce an effluent with relative low organic matter and phosphorus, provided that there is a neutralization unit to control the pH and SS of the effluent.

  • PDF

Evaluation of the Nutrient Removal Performance of the Pilot-scale KNR (Kwon's Nutrient Removal) System with Dual Sludge for Small Sewage Treatment (소규모 하수처리를 위한 파일럿 규모 이중슬러지 KNR® (Kwon's nutrient removal) 시스템의 영얌염류 제거성능 평가)

  • An, Jin-Young;Kwon, Joong-Chun;Kim, Yun-Hak;Jeng, Yoo-Hoon;Kim, Doo-Eon;Ryu, Sun-Ho;Kim, Byung-Woo
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.67-77
    • /
    • 2006
  • A simple dual sludge process, called as $KNR^{(R)}$ (Kwon's Nutrient Removal) system, was developed for small sewage treatment. It is a hybrid system that consists of an UMBR (Upflow multi-layer bioreactor) as anaerobic and anoxic reactor with suspended denitrifier and a post aerobic biofilm reactor, filled with pellet-like media, with attached nitrifier. To evaluate the stability and performance of this system for small sewage treatment, the pilot-scale $KNR^{(R)}$ plant with a treatment capacity of $50m^3/d$ was practically applied to the actual sewage treatment plant, which was under retrofit construction during pilot plant operation, with a capacity of $50m^3/d$ in a small rural community. The HRTs of a UMBR and a post aerobic biofilm reactor were about 4.7 h and 7.2 h, respectively. The temperature in the reactor varied from $18.1^{\circ}C$ to $28.1^{\circ}C$. The pilot plant showed stable performance even though the pilot plant had been the severe fluctuation of influent flow rate and BOD/N ratio. During a whole period of this study, average concentrations of $COD_{cr}$, $COD_{Mn}$, $BOD_5$, TN, and TP in the final effluent obtained from this system were 11.0 mg/L, 8.8 mg/L, 4.2 mg/L, 3.5 mg/L, 9.8 mg/L, and 0.87/0.17 mg/L (with/without poly aluminium chloride(PAC)), which corresponded to a removal efficiency of 95.3%, 87.6%, 96.3%, 96.5%, 68.2%, and 55.4/90.3%, respectively. Excess sludge production rates were $0.026kg-DS/m^3$-sewage and 0.220 kg-DS/kg-BOD lower 1.9 to 3.8 times than those in activated sludge based system such as $A_2O$ and Bardenpho.

  • PDF

A Study on Efficiency of SBR Process by Composition of Artificially Wastewater (인공하수 조성 성분에 따른 SBR 처리 공정의 효율에 관한 연구)

  • Lee Jang-Hoon;Jang Seung-Cheol;Kwon Hyuk-Ku;Kim Dong Wook
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.99-106
    • /
    • 2005
  • The removals of organic matter, nitrogen and phosphate in wastewater were investigated with Sequencing Batch Reactor (SBR). Glucose and sodium acetate were Used for organic carbon source so as to know nutrient removal efficiency in proportion to MLSS concentration. In the case of glucose, the COD removal rate was $74\%,\;41\%\;and\;66\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was $57\%,\;21\%\;and\;38\%$, the T-N was $24\%,\;13\%\;and\;44\%$, and the T-P was $12\%,\;21\%\;and\;33\%$. As a result, the removal rate of organic materials showed the finest remove when MLSS was 5000, but the nutrient removal rate appeared as was best when MLSS was 1000. In the case of sodium acetate, the COD removal rate was $83\%,\;81\%\;and\;86\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was appeared by $76\%,\;82\%\;and\;92\%$, the T-N $57\%,\;42\%\;and\;78\%$, and the T-P $48\%,\;52\%\;and\;38\%$. As a result, organic and T-N removal rates were best when MLSS was 1000. But, the T-P removal rates were best when MLSS was 3000. Glucose was shown fast removal in reaction beginning, but screened by more efficient thing though sodium acetate removes organic matter, nitrogen and phosphate. Form of floc was ideal in all reactors regardless of carbon source and MLSS concentration. And its diameter was about $200\~500{\mu}m$.

Nutrient Removal Hybrid Process to Use Suspended and Attached Growth Microorganisms and Apply the Contact and Stabilization Process (부유 및 부착성장 미생물을 이용한 접촉안정형 영양염류처리 하이브리드 공정)

  • Kim, Man-Soo;Park, Jong-Woon;Lee, Sang-Ill;Park, Chul-Whi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.452-459
    • /
    • 2007
  • Nutrient removal hybrid process to use suspended and attached growth microorganisms and apply the contact and stabilization process was process obtaining good results to HRT within 6 hours to dominate nitrifier and to promote separation and growth of autotrophs and heterotrophs to pack with EPS(Expanded Poly-Styrene) media in nitrification reactor. An average effluent quality of this process was below 5.2 mg/L, 7.3 mg/L, 4.9 mg/L as $BOD_5,\;COD_{Mn}$, SS concentration and 6.8 mg/L, 0.6 mg/L as T-N, T-P concentration. Also, An average removal efficiency of this process was 94.6%, 79.8%, 94.9% as $BOD_5,\;COD_{Mn}$, SS and 70.8%, 76.9% as T-N, T-P. 16S-rRNA analysis result of microorganisms attached to EPS media was researched Nitrosomonas and Nitrosococcus blown to ammonia-oxidizing bacteria cluster to include Gallionella and these microorganisms were researched to involve about 6% of biofilm attached EPS media. Consequently, this process was treated below 10 mg/L and 1.0mg/L as T-N, T-P concentration at short hydraulic retention time(about 6 hr) to dominate nitrifier.

Sludge Returned CMAS에 의한 전기부속품제조공장 폐수처리

  • 김남천;이시진
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.427-433
    • /
    • 1997
  • Sludge Returned CMAS process was applied to treat the wastewater from electric accessory manufacturing company while this type of wastewater was usually treated by chemical process. This result show that the removal rate of TCOD was about 70-80% regardless of hydraulic retention time, On the contrary, the removal rate of BOD was abtained in a range of 77-92% depending on hydraulic retention time. In order to remove more than 80% of organic materials with the proposed process, the F/M ratio should be maintained below 0.17. In this case, the calculated value of organic removal rate, Km, was calculated to be 1.26 hr$^{-1}$, and the ratio of cell synthesis/total energy was 0.32 and 0.26 for COD and BOD base, respectively. The yield coefficient was calculated to be 0.242 and the half velocity coefficient was 0.3 hr$^{-1}$. The value of endogenous respiration coefficient was 0.02 hr$^{-1}$. The measured effluent BOD concentration, MLSS concentration in aeration tank, oxygen uptake rate, and sludge production were matched relatively well with the calculated values using above coefficients, In order to optimize the dewatering of sludge, the hydraulic retention time was recommended to be 15. 6 hrs. These results indicate that the wastewater from an eletric accessory manufacturing company can be treated safely with a biological process.

  • PDF