• Title/Summary/Keyword: BNR(Biological Nutrient Removal)

Search Result 50, Processing Time 0.024 seconds

Nutrient Removal Characteristics by the Addition Ratio of BNR Sludge in SBR (SBR에서 BNR 슬러지 식종비에 따른 영양염류 제거 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • Biological nutrient removal (BNR) sludge was added to a sequencing batch reactor (SBR) in the addition ratios of 0%, 20%, 40%, 50% while observing the variation of nutrient removal characteristics and microorganism groups. When the BNR sludge was added in a ratio over 40%, the characteristics of EBPR (enhanced biological phosphorus removal) was shown at the 27 days. However, a distinct BNR was not shown when the addition ratio of BNR sludge was lower than 40%. The organic removal efficiency were shown as 90% in all SBRs irrespective of the addition ratio of BNR sludge. At the 27 days, the phosphorus removal efficiencies were shown as 40%, 55%, 77% and 69%, respectively, according to the addition ratio of BNR sludge. Overall, efficient nitrification and phosphorus removal was shown when the added BNR sludge ratio was over 40%.

Effect of Pre-NH3 Stripping on the Advanced Sewerage Treatment by BNR (BNR에 의한 하수의 고도처리에 미치는 NH3 스트리핑 전처리의 영향)

  • Seo, Jeong-Beom;An, Kwang-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.846-850
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to increase influent C/N ratio by ammonia stripping without required carbon source and for improving treatment efficiencies of sewerage by the combination process of ammonia stripping and BNR (StripBNR). The results of this study were summarized as follows. BOD removal efficiencies of BNR and StripBNR were 95.3% and 93.2%, respectively. T-N and T-P removal efficiencies of BNR were 53.3% and 40.8%, respectively. T-N and T-P removal efficiencies of StripBNR were 72.8% and 62.9%, respectively. Concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at BNR effluent were 0.03 mg/L, 0.08 mg/L and 9.12 mg/L, respectively. On the other hands, concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at StripBNR effluent were 5.79 mg/L, 0.01 mg/L and 0.14 mg/L, respectively. Consequently, influent C/N ratio of BNR process was increased by ammonia stripping. Removal efficiency of T-N and T-P was improved about 20% by the process of StripBNR.

The Nitrogen and Phosphorus Removal of UNR Process Using Sludge Carbon Source (슬러지 탄소원을 주입한 UNR공정의 동절기 질소, 인 처리효율)

  • Kim Young Gyu;Kim In Bae
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.93-97
    • /
    • 2002
  • The aim of this study was to evaluate on the removal effect of total nitrogen and phosphorus with municipal wastewater in ultrasonic nutrient removal (UNR) process using ultrasonic sludge carbon source. The removal efficiency for total nitrogen was 44.2% at biological nutrient removal (BNR) process, 50.8% at UNR process. The removal efficiency for total phosphorus was 45.6% at BNR process, 46.2% at UNR process. The removal of nitrogen was effectively influenced by ultrasonic sludge carbon source.

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

Structure of Bacterial Communities in Biological Nitrogen Removal System (Biological Nitrogen Removal System의 세균 군집 분석)

  • Kim, Kyung-Mi;Lee, Sang-Ill;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • To understand the efficient process of biological nitrogen removal (BNR) system, the structure of bacterial communities in nitrification reactors was analyzed using PCR and terminal restriction fragment length poly morphism (I-RFLP) methods. In this study, we used an advanced treatment system with plotting media, Nutrient Removal Laboratory system, or the rumination type sequencing batch reactor (SBR) system. The terminal restriction fragments of ammonia-oxidizing bacteria (AOB) and other $\beta-proteobacteria$ were observed in all of three BNR systems. The nucleotide sequence analysis of terminal restriction fragments showed that Nitrosomonas and Nitrosolobus were major populations of AOB in SBR system, whereas uncultured $\beta-proteobacteria$ and Cardococcus australiensis were the predominant groups in other two BNR systems. Also the SBR system may be more efficient to enrich AOB. These results indicate that the different structure of bacterial community may be developed depending on the wastewater treatment systems, although the same influent is used.

A Study on the Biological Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Biofilm Reactor (연속회분식 생물막 반응기(Sequencing Batch Biofilm Reactor)를 이용한 수중의 유기물, 질소 및 인의 동시 제거에 관한 연구)

  • 박민정;김동석
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.84-91
    • /
    • 2004
  • Biological nutrient removal(BNR) from wastewater was performed by adopting various process configurations. The simultaneous biological organics, phosphorus and nitrogen removal of synthetic wastewater was investigated in a sequencing batch biofilm reactor (SBBR). The other reactor was operating as a reference, without biofilm being added. The cycling time in SBR and SBBR was adjusted at 12 hours and then certainly included anaerobic and aerobic conditions. Both systems has been operated with a stable total organic carbon(TOC), nitrogen and phosphorus removal performance for over 90 days. Average removal efficiencies of TOC and total nitrogen were 83% and 95%, respectively. The nitrification rate in SBR was higher than that in SBBR. On the contrary, the denitrification rate in SBBR was higher than that in SBR. The phosphorus release was occurred in SBBR, however, not in SBR because of the inhibition effect of NO$_3$$^{[-10]}$ .

Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment

  • Lee, Soo-Youn;Kim, Hyeon-Guk;Park, Jong-Bok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment.

Evaluating Two Types of Rectangular Secondary Clarifier Performance at Biological Nutrient Removal Facilities (생물학적 고도처리공법에 적용된 두 형태의 장방형 이차침전지 성능 파악)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • There are two types of rectangular secondary clarifier at biological nutrient removal (BNR) facility to settle MLSS; conventional activated sludge secondary clarifier and Gould Type I clarifier. In this study, the performances of two types at respective biological nutrient removal facility are compared using weekly operational data. Surface Overflow Rate (SOR), Surface Loading Rate (SLR), Sludge Volume Index (SVI), secondary effluent SS concentration are studied. It has found that Gould Type I has 3.5 times less average secondary effluent SS concentration that is 2.4 mg/L than that of conventional activated sludge secondary clarifier. Both SOR and SLR have shown little effect on secondary effluent SS concentrations at Gould Type I clarifier in contrary that SOR affects the secondary effluent SS concentrations at conventional activated sludge rectangular secondary clarifier. From this study, it is recommended that Gould Type I must be considered for secondary clarifier when BNR plant is designed.

Characteristics of Nutrients Removal Process Activating Soil Microorganisms and Phosphorus Uptake under Anoxic Condition(II) (토양미생물을 활성화한 영양염류 제거 공정의 특성과 무산소 조건에서의 인 섭취(II))

  • Shin, Eung-Bae;Ko, Nam-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1757-1763
    • /
    • 2000
  • To consider the nutrient removal characteristics of BNR process activating soil microorganisms under the influence of DPB and to clear the characteristics of DPB under anoxic condition was investigated in the this study. The batch tests were conducted using sludge sampled from the BNR process activating soil microorganisms during operation periods. The results of this study were summarized as follows: - The DPB(Denitrifying Phosphorus removing Bacteria) performing denitrification and phosphorus uptake in the anoxic phase plays an important role in removing nitrogen and phosphorus in the BNR process activating soil microorganisms. - The PUR(Phosphorus Uptake Rate) of DPB in the anoxic phase was to be about 50% of PUR in the aerobic phase. - The DPB in the BNR process turned out to be increasing nutrient removal efficiency of BNR process.

  • PDF

Comparative assessment on the influences of effluents from conventional activated sludge and biological nutrient removal processes on algal bloom in receiving waters

  • Park, Chul;Sheppard, Diane;Yu, Dongke;Dolan, Sona;Eom, Heonseop;Brooks, Jane;Borgatti, Douglas
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.276-283
    • /
    • 2016
  • The goal of this study was to evaluate the effect of effluents from conventional activated sludge (CAS) and biological nutrient removal (BNR) processes on algal bloom in receiving waters. We made multiple effluent sampling from one CAS and two BNR facilities, characterized their effluents, and conducted bioassay using river and ocean water. The bioassay results showed that CAS effluents brought similar productivity in both river and ocean water, while BNR effluents were more reactive and productive in ocean water. Unexpectedly, nitrogen-based biomass yields in ocean water were up to six times larger for BNR effluents than CAS effluent. These results indicated that nitrogen in BNR effluents, although its total concentration is lower than that of CAS effluent, is more reactive and productive in ocean water. The ocean water bioassay further revealed that effluents of BNR and CAS led to considerably different phytoplankton community, indicating that different characteristics of effluents could also result in different types of algal bloom in receiving waters. The present study suggests that effects of upgrading CAS to BNR processes on algal bloom in receiving waters, especially in estuary and ocean, should be further examined.