• Title/Summary/Keyword: BMPs (Best Management Practices)

Search Result 70, Processing Time 0.025 seconds

Analysis of the Efficiency of Non-point Source Pollution Managements Considering the Land Use Characteristics of Watersheds (유역의 토지이용 특성을 고려한 비점오염원 관리방안 적용에 따른 저감 효율 분석)

  • Choi, Yujin;Lee, Seoro;Kum, Donghyuk;Han, Jeongho;Park, Woonji;Kim, Jonggun;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.405-422
    • /
    • 2020
  • Land use change by urbanization has significantly affected the hydrological process including the runoff characteristics. Due to this situation, it has been becoming more complicated to manage non-point source pollutions caused by rainfall. In order to effectively control non-point sources, it is necessary to identify the reduction efficiency of the various management method based on land use characteristics. Thus, the purpose of this study is to analyze the reduction efficiency of non-point source pollution management practices targeting three different watersheds with the different land use characteristics using the Soil and Water Assessment Tool (SWAT). To do this, the vulnerable subwatersheds to non-point source pollution occurrence within each watershed were selected based on the streamflow and water quality simulation results. Then, considering the land use, low impact development (LID) or best management practices (BMPs) were applied to the selected subwatersheds and the efficiency of each management was analyzed. As a result of analysis of the non-point source pollution reduction efficiency, when LID was applied to urban areas, the average reduction efficiencies of SS, NO3-N, and TP were 5.92%, 4.62%, and 10.35%, respectively. When BMPs were applied to rural areas, the average reduction efficiencies of SS, TN and TP were 35.45%, 4.37%, and 10.16%, respectively. The results of this study can be used as a reference for determining appropriate management methods for non-point source pollution in urban, rural, and complex watersheds.

Assessment of Cell Based Pollutant Loadings in an Intensive Agricultural Watershed (농업 소유역 격자단위 오염부하량 평가)

  • Kang, Moon-Seong;Cho, Jae-Pil;Chun, Jong-An;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.87-94
    • /
    • 2009
  • The objectives of this paper were to estimate cell based pollutant loadings for total maximum daily load (TMDL) programs and to evaluate the applicability of the agricultural nonpoint source (AGNPS) model for an intensive agricultural watershed in Korea. The model was calibrated and validated at a watershed of 384.8 ha of drainage area using the observed data from 1996 through 2000 in terms of runoff, suspended solid, total nitrogen, and total phosphorus on a hourly basis. Analysis of spatial variations of pollutant loadings for rainfall frequencies of various intensities and durations were conducted. In addition, the validated model was applied to estimated the TMDL removal efficiency for best management practices (BMPs) scenarios which were selected by taking into account the pollutant characteristics of the study watershed. The model can help to understand the problems and to find solutions through landuse changes and BMPs. Thus, the method used for this study was able to identify TMDL quantitatively as well as qualitatively for various sources pollution that are spatially dispersed. Also it provides an assessment of the impact of BMPs on the water bodies studied, allowing the TMDL programs to be complemented more effectively.

Impact of BMP Allocation on Discharge and Avoided Costs in an Urbanized Watershed (최적관리기법 위치분배에 의한 유역단위 하천유량과 회피비용 변화에 관한 연구)

  • Kang, Sang-Jun
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.83-107
    • /
    • 2010
  • Urbanized environments are constructed to estimate peak flow and cost savings in response to possible BMP allocation at a watershed scale. The main goal is to explore the proper allocation of sub-watershed level BMPs for peak flow attenuation at a watershed scale. Since several individual site scale BMPs work as a form of aggregated BMPs at a sub-watershed scale, it is a question as to how to properly allocate the sub-watershed level BMPs at a watershed scale. The Hydrological Simulation Program-FORTRAN (HSPF) is set up for a hypothetically urbanized watershed. A peak flow is determined to be the primary variable of interest and targeted to characterize the spatial distribution of aggregated BMPs. Construction cost of a regional pond forms the basis of the economic valuation. The results indicate that when total size of BMPs is constant in the entire watershed, (1) it is most effective to have aggregated BMPs in some upper sub-watersheds while the BMPs in either the mainstem sub-watershed or a single sub-watershed are the least effective choices for peak flow attenuation at a watershed scale; (2) savings exist between allocation differences and reduced peak flow increases cost savings. The largest saving is found in the strategy of aggregated BMPs in some upper sub-watersheds. These findings, however, call for follow-up site specific case studies revisiting the watershed scale impacts of BMP allocation. Then, it will be argued that location and extent of decentralization are considerable policy variables for an alternative stormwater management policy at a watershed scale.

  • PDF

Distribution of Pyrethroid Insecticides in a Nursery Drainage Channel

  • Lee, Sang-Jin;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.891-896
    • /
    • 2003
  • The objectives of this study wre to investigate the effects of two synthetic pyrethroids, bifenthrin(BF) and permethrin(PM), in runoff and to evaluate the effects of suspended solids (SS) in the transport of pyrethroid along the drainage channel. Monitoring of BF and PM was conducted with the runoffs as well as in sediments existing along the drainage channel at a nursery site located in southern California, USA. This study also suggests Best Management Practices (BMPs) to alleviage the pollution caused by heavy usage of pyrethroid insecticides at nursery sites. Due to a high affinity to solid particles of pyrethroid insecticides, the concentrations of BF and PM were proportional to the SS contents along the drainage channel. This study suggests that alleviation of pyrethroids existing in runoffs could be controlled by the removal of suspended solids in runoffs and potential implications of current drainage channels for mitigation of pesticides associated with runoffs.

Research on the Evaluation of Impaired Waterbody using the Flowrate Group at TMDL Unit Watershed in Nakdong River Basin (수질오염총량관리 단위유역 유량그룹별 수체 손상 분석)

  • Hwang, Ha-Sun;Kim, Sang-Soo;Kim, Jin-Lee;Park, Bae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.933-942
    • /
    • 2012
  • The purpose of this study is to evaluate the degree of waterbody impairment according to the flow conditions and present to the appropriate water quality improvement alternatives using observed water quality and flow for Total Maximum Daily Load (TMDL) implementation at 39 unit watersheds the nakdong river basin. Observed water quality data for 7 years are divided into five cumulative flow frequency group and comparing the each observed water quality data and TMDL Target water quality (TWQ) the last evaluate the water quality is impaired group. We found that the cumulative flow frequency group-specific the average excess rate of V group was the highest (32.86%), followed by the IV group (26.04%), group III (23.36%), II group (22.67%), I group (20.70%), the degree of impaired waterbody tended to be inversely proportional to the flow rate. Resulted from cumulative flow frequency group of impaired water quality assessment, 13 unit watersheds are impaired from a group IV and group V affected by point sources. Therefore, improvement of sewage discharge and the initial composition of the riparian buffer zone are needed. Nakbon F, Namkang D and Namkang E within 13 unit watersheds are impaired from group II and III affected by non-point sources. Therefore, application of Best Management Practices (BMPs) is needed for these watersheds. Evaluation of impaired waterbody using Cumulative flow frequency group is able to determine the extent of the judgment to TWQ exceeded by the flow conditions and helps proper setting Standard flow and planning pollutant reduction for TMDL.

Removal Efficiency of TSS Loadings from Expressway by Road Sweeping and Sand Filter Facility Using ROADMOD (ROADMOD를 이용한 도로청소 및 모래여과시설에 의한 고속도로에서의 강우시 TSS 저감효과 분석)

  • Heeman Kang;Ji-Hong Jeon
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2023
  • In this study, the removal efficiency of road sweeping and sand filter facility for removing total suspended solid (TSS) as nonpoint source pollution from expressway was evaluated for the last 10 years (2012~2021) using ROADMOD. ROADMOD is a screening level model and was calibrated for runoff rate and TSS loading both at the inlet, which is the loading from the drainage area, and the outlet, from the sand filter facility. The drainage area is 715 m2 and the dimensions of sand filter facility are 1.5 m (wide) × 3.8 m (length) × 1.5 m (depth). The monitoring period for model calibration was the rainfall event during Aug. 31~Sep. 1, 2021 and the amount of rainfall was 74.5 mm. As a result of calibration, the determination coefficients (R2) of the flow rate were 0.66 and 0.86, for the inlet and outlet, respectively, and those of TSS loading were 0.50 and 0.84, for the inlet and outlet, respectively. Considering that ROADMOD is a screening level model, the calibration results were reasonable to evaluate the best management practices (BMPs) on the expressway. Using ROADMOD simulation results for 2012~2021, the average yearly runoff rate from the expressway was 82% and removal efficiency was 9% for road sweeping, 35% for sand filter facility, and 39% for both road sweeping and sand filter facility.

Analysis of Effects on Soil Erosion Reduction of Various Best Management Practices at Watershed Scale (최적관리기법에 따른 토양유실 저감 효과 유역단위 분석)

  • Lee, Dong Jun;Lee, Ji Min;Kum, Donghyuk;Park, Youn Shik;Jung, Younghun;Shin, Yongchul;Jeong, Gyo-Cheol;Lee, Byeong Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.638-646
    • /
    • 2014
  • Soil erosion from agricultural fields leads to various environmental problems weakening the capabilities of flood control and ecosystem in water bodies. Regarding these problems, Ministry of Environment of South-Korea prepared various structural and non-structural best management practices (BMPs) to control soil erosion. However, a lot of efforts are required to monitor and develop BMPs. Thus, modeling techniques have been developed and utilized for these issues. This study estimated the effectiveness of BMPs which are a vegetation mat with infiltration roll and Roll type vegetation channel using Soil and Water Assessment Tool (SWAT) model through the adjustment of the conservation practice factors, P factors, for Universal Soil Loss Equation which were calculated by monitoring data collected at the segment plots. Each BMP was applied to the areas with slopes ranged from 7% to 13% in the Haeanmyeon watershed. As a result of simulation, the vegetation mat with infiltration roll and Roll type vegetation channel showed 55% and 59% efficiency of soil erosion reduction, respectively. Also, Vegetation mat with infiltration roll and Roll type vegetation channel showed each 11.2% and 11.8% efficiency in reduction of sediment discharge. These roll type vegetation channel showed greater efficiency of soil erosion reduction and sediment discharge. Based on these results, if roll type vegetation channel is widely used in agricultural fields, reduction of soil erosion and sediment discharge of greater efficiency would be expected.

Development of Composite Soil Quality Index Evaluation System based on Web GIS (Web GIS기반의 복합적 토양 질 평가 시스템 개발)

  • Sung, Yunsoo;Yang, Jae E;Kim, Sung Chul;Ryu, Jichul;Jang, Wonseok;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.693-699
    • /
    • 2015
  • It has been known that torrential rainfall events have been occurring worldwide due to climate change. The accelerated soil erosion has caused negative impacts on water quality and ecosystem of receiving waterbodies. Since soil security issues have been arising in various areas of the world, intensive interests have been given to topsoil management in Korea. Thus in this study, Web GIS-based computing system of physical, chemical, and biological topsoil quality indices were developed. In this study, five soil quality maps at national scale and top soil erosion potential were prepared for evaluation of soil quality based on soil erosion potential. For this system, the open source Web GIS engine, OpenGeo, was used as core engine of the system. With this system, decision makers or related personnel in areas of soil erosion Best Management Practices (BMPs) would be able to find the most appropriate soil erosion BMPs based on soil erosion potential and soil quality at the area of interest. The Web GIS system would be efficiently used in decision making processes because of ease-of-use interface and scientific data used in this system. This Web GIS system would be efficiently used because this system could provide scientific knowledge to decision makers or stakeholders. Currently various BMP database are being built to be used as a decision support system in topsoil management and topsoil quality areas.

Optimization of Vegetative Filter Strip using VFSMOD-w model and Genetic-Algorithm (VFSMOD-w 모형과 유전자 알고리즘을 이용한 식생여과대의 최적화)

  • Park, Youn Shik;Hyun, Geunwoo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.159-165
    • /
    • 2014
  • Vegetative Filter Strip (VFS) is one of effective Best Management Practices (BMPs) to prevent sediment-laden water problem, is installed at the edge of source area such agricultural area so that sediment occurred in source area is trapped by VFS before it flow into stream or river. Appropriate scale of it needs to be simulated before it is installed, considering various field conditions. In this study, a model using VFSMOD-w model and Genetic Algorithm to determine effective VFS length was developed, it is available to calibrate input parameter related to source area sediment yield through thousands of VFSMOD-w simulations. Useful DBs, moreover, are stored in the model so that very specific input parameters can be used with reasonable values. Compared simulated values to observed data values for calibration, R2 and Nash-Stucliffe model efficiency coefficient were 0.74 and 0.65 in flow comparison, and 0.89 and 0.79 in sediment comparison. The model determined 1.0 m of Filter Length, 0.18 of Filter Slope, and 0.2 cm of Filter Media Spacing to reduce 80% of sediment by VFS. The model has not only Auto-Calibration module also DBs for specific input parameters, thus, the model is expected to be used for effective VFS scale.

Minimizing Nutrient Loading from SCB Treated Paddy Rice Fields through Water Management (SCB 액비 시용 논에서 물관리를 통한 양분의 수계 부하 최소화 방안)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Kang, Seong-Soo;Jung, Goo-Bok;Hong, Seung-Chang;Chae, Mi-Jin;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.671-675
    • /
    • 2012
  • This study was conducted to establish the BMPs (Best Management Practices) for preventing pollutant loadings from paddy rice field applied livestock liquid manure from 2008 through 2011. Cultivated paddy rice fields (Gyeonggi province, Korea) were treated with SCB (Slurry composting and bio-filtration process) liquid fertilizer. The BMPs for paddy rice field developed in this study includes: 1) the controlling a drainage water gate in paddy rice field from right after SCB liquid fertilizer application to 3 weeks after rice transplanting; 2) livestock liquid fertilizer application to paddy rice soils in 20 days before rice transplanting to encourage the utilization of liquid fertilizer; 3) preservation of surface water depth to 5 cm in a paddy field right after SCB liquid fertilizer applied to minimize a water pollution and enhance the utilization of liquid fertilizer; and 4) blocking a water gate at least for 2 days to inactivate E. coli survival. The findings of this study will provide useful and practical guideline to applicators of agricultural soil in deciding appropriate handling and time frames for preventing pollution of water quality for sustainable agriculture.