• Title/Summary/Keyword: BMP2

Search Result 486, Processing Time 0.026 seconds

Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/β-Catenin Signaling Pathway

  • Lee, Yu Rim;Bae, Seunghee;Kim, Ji Yea;Lee, Junwoo;Cho, Dae-Hyun;Kim, Hee-Sik;An, In-Sook;An, Sungkwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1830-1840
    • /
    • 2019
  • Loliolide is one of the most ubiquitous monoterpenoid compounds found in algae, and its potential therapeutic effect on various dermatological conditions via agent-induced biological functions, including anti-oxidative and anti-apoptotic properties, was demonstrated. Here, we investigated the effects of loliolide on hair growth in dermal papilla (DP) cells, the main components regulating hair growth and loss conditions. For this purpose, we used a three-dimensional (3D) DP spheroid model that mimics the in vivo hair follicle system. Biochemical assays showed that low doses of loliolide increased the viability and size of 3D DP spheroids in a dose-dependent manner. This result correlated with increases in expression levels of hair growth-related autocrine factors including VEGF, IGF-1, and KGF. Immunoblotting and luciferase-reporter assays further revealed that loliolide induced AKT phosphorylation, and this effect led to stabilization of β-catenin, which plays a crucial role in the hair-inductive properties of DP cells. Further experiments showed that loliolide increased the expression levels of the DP signature genes, ALP, BMP2, VCAN, and HEY1. Furthermore, conditioned media from loliolide-treated DP spheroids significantly enhanced proliferation and the expression of hair growth regulatory genes in keratinocytes. These results suggested that loliolide could function in the hair growth inductivity of DP cells via the AKT/β-catenin signaling pathway.

Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells

  • Green, David W.;Kwon, Hyuk-Jae;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.267-272
    • /
    • 2015
  • Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC's), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC's led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I-IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC's.

Analysis of Soil Erosion Reduction Effect of Rice Straw Mat by the SWAT Model (SWAT 모형을 이용한 볏짚매트의 토양유실 저감효과 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Choi, Joong-Dae;Kim, Jong-Gun;Shin, Min-Hwan;Ryu, Ji-Chul;Kang, Hyun-Woo;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.97-104
    • /
    • 2010
  • The purpose of this study is to evaluate sediment yield reduction under various field slope conditions with rice straw mat. The Vegetative Filter Strip Model-W (VFSMOD-W) and Soil and Water Assessment Tool (SWAT) were used for simulation of sediment yield reduction effect of rice straw mat. The Universe Soil Loss Equation Practice factor (USLE P factor), being able to reflect simulation of rice straw mat in the agricultural field, were estimated for each slope with VFSMOD-W and measured soil erosion values under 5, 10, and 20 % slopes. Then with the regression equation for slopes, USLE P factor was derived and used as input data for each Hydrological Response Unit (HRU) in the SWAT model. The SWAT Spatially Distributed-HRU (SD-HRU) pre-processor module was utilized, moreover, in order to consider spatial location and topographic features (measured topographic features by field survey) of all HRU within each subwatershed in the study watershed. Result of monthly sediment yield without rice straw mat (Jan. 2000 - Aug. 2007) was 814.72 ton/month, and with rice straw mat (Jan. 2000 - Aug. 2007) was 526.75 ton/month, which was reduced as 35.35 % compared without it. Also, during the rainy season (from Jun. to Sep. 2000 - 2007), when without vs. with rice straw mat, monthly sediment indicated 2,109.54 ton and 1,358.61 ton respectively. It showed about 35.60 % was reduced depending on rice straw mat. As shown in this study, if rice straw mat is used as a Best Management Practice (BMP) in the sloping fields, rainfall-driven sediment yield will be reduced effectively.

Water Quality Modeling for Bokha Stream by WASP5 Model (WASP5 모형을 적용한 복하천의 수질 예측)

  • Shin, Dong-Seok;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.233-238
    • /
    • 1997
  • WASP5 was applied to evaluate water quality of Bokha stream with 17km of its main stem located in Ichon-city, Kyunggi province in Korea. Boundaries of the stream for the WASP5 were the Jumi bridge, 10 major tributaries and one wastewater treatment system. The stream was divided into 37 segments with about 350m length. The flowrate of the 10 day's average of the stream was obtained from the hydrograph data and the discharge-stage rating curve. Simulated quality constituents included nitrogen, phosphorus, BOD and DO. Monthly records of water quality and loads in 1996 were used for the calibration of parameters of WASP5. Simulation showed high correlations between calculated and observed concentration with monthly runoff ratio in Bokha stream. At downstream boundary, Jumi bridge [Seg.36], similar correlations were appeared. However, simulated concentrations by using annual runoff ratio were somewhat differentiated from those of the observed.

  • PDF

Thymosin Beta4 Regulates Cardiac Valve Formation Via Endothelial-Mesenchymal Transformation in Zebrafish Embryos

  • Shin, Sun-Hye;Lee, Sangkyu;Bae, Jong-Sup;Jee, Jun-Goo;Cha, Hee-Jae;Lee, You Mie
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2014
  • Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelial-mesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor ${\beta}$ ($TGF{\beta}$) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-${\beta}$-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT.

Effects of Heat Pre-Treatment and Reactor Configurations on the Anaerobic Treatment of Volatile Solids (열전처리와 반응조 형태가 고형 유기물의 혐기성 처리에 미치는 영향)

  • Hong, Young-Soek;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.104-116
    • /
    • 1996
  • Anaerobic digestion is generally used for the treatment of volatile organic solids such as manure and sludge from waste water treatment plants. However, the reaction rate of anaerobic process is slow, and thus it requires a large reactor volume. To minimize such a disadvantage, physical and chemical pre-treatment is generally considered. Another method to reduce the reactor size is to adopt different reactor system other than CSTR. In this paper, the effects of heat pre-treatment and reactor configurations on the anaerobic treatability of volatile solids was studied. Carrot, kale, primary sludge, and waste activated sludge was chosen as the test materials, and the BMP method was used to evaluate the maximum methane production and first order rate constants from each sample. After the heat treatment at $130^{\circ}C$ for 30min., the measured increase in SCOD per gram VS was up to 394 mg/L for the waste activated sludge. However, the methane production potential per gram VS was increased for only primary and waste activated sludge by 17-23%, remaining the same for carrot and kale. The overall methane production process for the tested solids can be described by first order reactions. The increased in reaction constant after heat pre-treatment was also more significant for the primary and waste activated sludge than that for carrot and kale. therefore, the heat pre-treatment appeared to be effective for the solids with high protein contents rather than for the solids with high carbohydrate contents. Among the four reactor systems studied, CSTR, PFR, CSTR followed by PFR, and PFR with recycle, CSTR followed by PFR appeared to be the best choice considering methane conversion rate and the operational stability.

  • PDF

The application of chitosan to dental medicine

  • Hayashi, Y.;Yamada, S.;Ohara, N.;Kim, S-K.;Ikeda, T.;Yanagiguchi, K.;Matsunaga, T.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.545-545
    • /
    • 2003
  • Chitosan is applied as a dressing for oral mucous wound and a tampon following radical treatment of maxillary sinus. Furthermore, it is being investigated as an absorbing membrane for endodontic and periodontic surgeries. A few studies have reported osteoconduction and osteogenesia at the site of chitosan implant in vivo. However, compared with soft tissue healing processes, the mechanisms concerning effects of chitosan for biological mineralization have not yet been resoil In the present study, we studied the gene expression pattern using cDNA microarray and RT-PCR analyses in hard tissue forming osteoblasts cultured with water-soluble and low molecular weight chitooligosaccharide. cDNA microarray analysis revealed that 16 genes were expressed at 〉1.5-fold higher signal ratio levels in the experimental group compared with the control group after 3 days. RT-PCR analysis showed that chitosan oligomer induced an increase in the expression of two genes, CD56 antigen and tissue-type plasminogen activator. Furthermore, the expression of mRNAs for BMP-2 was almost identical in the experimental and control groups after 3 days of culture, but slightly increased after 7 days of culture with chitosan oligomer. These results suggest that a super-low concentration of chitooligosaccharide could modulate the activity of osteoblastic cells through mRNA levels and that the genes concerning cell proliferation and differentiation can be controlled by water-soluble chitosan.

  • PDF

Protective effects of remifentanil against H2O2-induced oxidative stress in human osteoblasts

  • Yoon, Ji-Young;Kim, Do-Wan;Kim, Eun-Jung;Park, Bong-Soo;Yoon, Ji-Uk;Kim, Hyung-Joon;Park, Jeong-Hoon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.4
    • /
    • pp.263-271
    • /
    • 2016
  • Background: Bone injury is common in many clinical situations, such as surgery or trauma. During surgery, excessive reactive oxygen species (ROS) production decreases the quality and quantity of osteoblasts. Remifentanil decreases ROS production, reducing oxidative stress and the inflammatory response. We investigated remifentanil's protective effects against $H_2O_2$-induced oxidative stress in osteoblasts. Methods: To investigate the effect of remifentanil on human fetal osteoblast (hFOB) cells, the cells were incubated with 1 ng/ml of remifentanil for 2 h before exposure to $H_2O_2$. For induction of oxidative stress, hFOB cells were then treated with $200{\mu}M$ $H_2O_2$ for 2 h. To evaluate the effect on autophagy, a separate group of cells were incubated with 1 mM 3-methyladenine (3-MA) before treatment with remifentanil and $H_2O_2$. Cell viability and apoptotic cell death were determined via MTT assay and Hoechst staining, respectively. Mineralized matrix formation was visualized using alizarin red S staining. Western blot analysis was used to determine the expression levels of bone-related genes. Results: Cell viability and mineralized matrix formation increased on remifentanil pretreatment before exposure to $H_2O_2$-induced oxidative stress. As determined via western blot analysis, remifentanil pretreatment increased the expression of bone-related genes (Col I, BMP-2, osterix, and $TGF-{\beta}$). However, pretreatment with 3-MA before exposure to remifentanil and $H_2O_2$ inhibited remifentanil's protective effects on hFOB cells during oxidative stress. Conclusions: We showed that remifentanil prevents oxidative damage in hFOB cells via a mechanism that may be highly related to autophagy. Further clinical studies are required to investigate its potential as a therapeutic agent.

Stem Cell Properties of Human Umbilical Cord-derived Stem Cells after Cryopreservation (냉동 보존 전후의 사람 탯줄 유래 줄기세포의 특성 분석)

  • Kang, Hyun-Mi;Park, Se-Ah;Yoon, Jin-Ah;Heo, Jin-Yeong;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.221-229
    • /
    • 2008
  • For the clinical application, it is needed to keep characteristics of stem cells after storage for a long time. In the present study, we examined stem cell properties of human cord-derived stem cells (HUC) after cryopreservation. Cells were isolated from human umbilical cord and cultured in vitro. At passage 2 or 3, HUC were suspended at a concentration of $1.0{\times}10^6/m{\ell}$ in cryomedium consisting of DMSO and FBS. After freezing at $-80^{\circ}C$ overnight, HUC were cryopreserved at $-196^{\circ}C$ nitrogen gas. After 6 months, HUC were thawed and cultured in vitro. Assessment for the stem cell properties was made upon the morphology, population doubling time, and expression profiles of genes and various proteins. Cryopreserved HUC showed more than 70% viability and maintained fibroblast-like morphology similar to HUC before cryopreservation. Throughout the culture, they underwent average 42.8 doublings and produced $6.75{\times}{10^{18}}$ cells. RT-PCR analyses showed that cryopreserved HUC expressed Oct-4, nanog, SCF, NCAM, nestin, GATA-4, BMP4, and HLA-1 genes. They did not express Brachyury and HLA-DR genes. Immunocytochemical studies showed that cryopreserved HUC reacted with antibodies against SSEA-3, -4, Thy-1, vimentin, fibronectin, HCAM, ICAM, HLA-1 proteins. They did not react with antibody against HLA-DR protein. Theses genes and proteins expression patterns of cryopresserved HUC were similar to those of HUC before cryopreservation. These results suggest that cryopreserved HUC could retain proliferative potential and they expressed various genes and proteins similar to HUC before cryopreservation. Thus, cryopreservation might be useful for HUC for future research and clinical application.

  • PDF

A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor (Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구)

  • Yoon Young-Bong;Park Jin-Young;Ju Jin-Young;Kim Myung-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.64-75
    • /
    • 2005
  • The total production of food waste was about 11,398ton/day('03) in Korea. Also, food waste was treated by landfill, incineration, reuse and anaerobic digestion. The method of food waste treatment depended primarily on landfill. However, the method of landfill causing social problems was prevented to treat food waste in the first of January 2005.12) Thus, anaerobic digestion is an important method to treat food waste because of possibility of energy recovery as methane gas. In this study, the possibility of food waste treatment containing high organic material and low pH in the one stage anaerobic reactor to save cost and time and energy recovery using $CH_{4}$ gas by the hybrid anaerobic reactor (HAR) was measured. The HAR was designed by combing the merits of the anaerobic filter (AF) to minimize the microorganism shock when food waste of very low pH was injected and up-flow anaerobic sludge blanket (UASB) to prevent from plugging and channeling phenomena by large suspended solids when semi solids were injected. Granule was packed in the section of HAR. The purpose of the BMP experiment was to measure the amount of methane generated when organic material was resolved under anaerobic conditions, to grasp bio resolution of organic material. Total accumulated methane production per VS amount was $0.471(m^{3}/\cal{kg}\;VS)$. So, the value was about $81.2\%$ of theoretical methane production which was $0.58(m^{3}/\cal{kg}\;VS)$ by elementary analysis and organic matter removal velocity (K) was $0.18(d^{-1})$. From these results, food waste was treated by anaerobic treatment. From this study, $CH_{4}$ generation from food waste (11,398 ton/day) could be estimated. By using an energy conversion factor of Braun's study, $5.97KWh/m^{3}\;CH4,\;60\%\;of\;CH_{4}$ gas generation, the amount of total energy producing food waste is to 6,727MWh/day. It could be confirmed that energy recovery using $CH_{4}$ gas was possible. Above these results, food waste containing organic matters of high concentration could be treated in HRT 30 days under an anaerobic condition, using the hybrid anaerobic reactor and reuse of $CH_{4}$ gas was possible.