• Title/Summary/Keyword: BMP-2 gene expression

Search Result 58, Processing Time 0.024 seconds

Comparison of gene expression profiles of human dental pulp cells treated with mineral trioxide aggregate and calcium hydroxide (인간치수세포에 Mineral Trioxide Aggregate와 수산화칼슘 제재 적용 시 유전자 발현 양상 비교)

  • Kim, Yong-Beom;Shon, Won-Jun;Lee, Woo-Cheol;Kum, Kee-Yeon;Baek, Seung-Ho;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.397-408
    • /
    • 2011
  • Objectives: This study investigated changes in gene expressions concerning of differentiation, proliferation, mineralization and inflammation using Human-8 expression bead arrays when white Mineral Trioxide Aggregate and calcium hydroxide-containing cement were applied in vitro to human dental pulp cells (HDPCs). Materials and Methods: wMTA (white ProRoot MTA, Dentsply) and Dycal (Dentsply Caulk) in a Teflon tube (inner diameter 10 mm, height 1 mm) were applied to HDPCs. Empty tube-applied HDPCs were used as negative control. Total RNA was extracted at 3, 6, 9 and 24 hr after wMTA and Dycal application. The results of microarray were confirmed by reverse transcriptase polymerase chain reaction. Results: Out of the 24,546 genes, 43 genes (e.g., BMP2, FOSB, THBS1, EDN1, IL11, COL10A1, TUFT1, HMOX1) were up-regulated greater than two-fold and 25 genes (e.g., SMAD6, TIMP2, DCN, SOCS2, CEBPD, KIAA1199) were down-regulated below 50% by wMTA. Two hundred thirty nine genes (e.g., BMP2, BMP6, SMAD6, IL11, FOS, VEGFA, PlGF, HMOX1, SOCS2, CEBPD, KIAA1199) were up-regulated greater than two-fold and 358 genes (e.g., EDN1, FGF) were down-regulated below 50% by Dycal. Conclusions: Both wMTA and Dycal induced changes in gene expressions related with differentiation and proliferation of pulp cells. wMTA induced changes in gene expressions related with mineralization, and Dycal induced those related with angiogenesis. The genes related with inflammation were more expressed by Dycal than by wMTA. It was confirmed that both wMTA and Dycal were able to induce gene expression changes concerned with the pulp repair in different ways.

THE ROLE OF TRANSCRIPTION FACTOR MSX2 AND DLX5 IN CALVARIAL BONE AND SUTURE DEVELOPMENT (두개골 및 두개봉합부 초기발육과정에서의 전사조절인자인 Msx2와 Dlx5의 역할)

  • Song, Min-Ho;Park, Mi-Hyun;Nam, Soon-Hyeun;Kim, Young-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.391-405
    • /
    • 2003
  • Craniosynostosis, known as a premature fusion of cranial sutures, is a developmental disorder characterized by precocious differentiation and mineralization of osteoblasts in the calvarial sutures. Recent genetic studies have demonstrated that mutation in the homeobox gene Msx2 causes Boston-type human craniosynostosis. Additionally, the phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. Furthermore transcription of osteocalcin, a mature osteoblast marker, is reciprocally regulated by the homeodomain proteins Msx2 and Dlx5. These facts suggest important roles of osteocalcin, Msx2 and Dlx5 genes in the calvarial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we have first analyzed by in situ hybridization the expression of osteocalcin, Msx2 and Dlx5 genes in the developing parietal bone and sagittal suture of mouse calvaria during the embryonic (E15-E18) stage. Osteocalcin mRNA was found in the periosteum of parietal bones from E15, and gradually more highly expressed with aging. Msx2 mRNA was intensely expressed in the sutural mesenchyme, osteogenic fronts and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and the periostem of parietal bones. To further examine the upstream signaling molecules of transcription factor Msx2 and Dlx5, we have done in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of BMP2-, BMP4-soaked beads onto the osteogenic fronts after 48 hours organ culture induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of $TGF{\beta}1$, GDF-6, -7, FGF-2, -4 and Shh did not induce the expression of Msx2 and Dlx5. Taken together. these data indicate that transcription factor Msx2 and Dlx5 play critical roles in the calvarial bone and suture development, and that BMP siganling is involved in the osteogenesis of calvarial bones and the maintenance of cranial sutures through regulating these two transcriotpn factors. Furthermore, different expression patterns between Msx2 and Dlx5 suggest their specific functions in the osteoblast differentiation.

  • PDF

Fat Mass and Obesity-Associated (FTO) Stimulates Osteogenic Differentiation of C3H10T1/2 Cells by Inducing Mild Endoplasmic Reticulum Stress via a Positive Feedback Loop with p-AMPK

  • Son, Hyo-Eun;Min, Hyeon-Young;Kim, Eun-Jung;Jang, Won-Gu
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.58-65
    • /
    • 2020
  • Fat mass and obesity-associated (FTO) gene helps to regulate energy homeostasis in mammals by controlling energy expenditure. In addition, FTO functions in the regulation of obesity and adipogenic differentiation; however, a role in osteogenic differentiation is unknown. This study investigated the effects of FTO on osteogenic differentiation of C3H10T1/2 cells and the underlying mechanism. Expression of osteogenic and endoplasmic reticulum (ER) stress markers were characterized by reverse-transcriptase polymerase chain reaction and western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity. BMP2 treatment increased mRNA expression of osteogenic genes and FTO. Overexpression of FTO increased expression of the osteogenic genes distal-less homeobox5 (Dlx5) and runt-related transcription factor 2 (Runx2). Activation of adenosine monophosphate-activated protein kinase (AMPK) increased FTO expression, and there was a positive feedback loop between FTO and p-AMPK. p-AMPK and FTO induced mild ER stress; however, tunicamycin-induced severe ER stress suppressed FTO expression and AMPK activation. In summary, FTO induces osteogenic differentiation of C3H10T1/2 cells upon BMP2 treatment by inducing mild ER stress via a positive feedback loop with p-AMPK. FTO expression and AMPK activation induce mild ER stress. By contrast, severe ER stress inhibits osteogenic differentiation by suppressing FTO expression and AMPK activation.

TGF-β Signaling and miRNAs Targeting for BMP7 in the Spleen of Two Necrotic Enteritis-Afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • Transforming growth factor beta ($TGF-{\beta}$) signaling pathways are involved in the regulation of proliferation, differentiation, immunity, survival, and apoptosis of many cells. The aim of this study was to investigate the differential expression of $TGF-{\beta}$-related genes, and their interactions and regulators in the spleen of two genetically disparate chicken lines (Marek's disease resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE) by Eimeria maxima and Clostridium perfringens infection. By using high-throughput RNA-sequencing, we investigated 76 $TGF-{\beta}$-related genes that were significantly and differentially expressed in the spleens of the chickens. Approximately 20 $TGF-{\beta}$ pathway genes were further verified by qRT-PCR, and the results were consistent with our RNA sequencing data. All 76 identified genes were analyzed through Gene Ontology and mapped onto the KEGG chicken $TGF-{\beta}$ pathway. Our results demonstrated that several key genes, including $TGF-{\beta}$1-3, bone morphogenetic proteins (BMP)1-7, inhibitor of differentiation (ID) proteins ID1-3, SMAD1-9, and Jun, showed a markedly differential expression between the two chicken lines, relative to their respective controls. We then further predicted 24 known miRNAs that targeted BMP7 mRNA from 139 known miRNAs in the two chicken lines. Among these, six miRNAs were measured by qRT-PCR. In conclusion, this study is the first to analyze most of the genes, interactions, and regulators of the $TGF-{\beta}$ pathway in the innate immune responses of NE afflicted chickens.

Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

  • Jin, Mei;Zhang, Jun-yan;Chu, Ming-xing;Piao, Jun;Piao, Jing-ai;Zhao, Feng-qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.650-657
    • /
    • 2018
  • Objective: The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods: cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results: In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion: Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth $factor-{\beta}$ ($TGF-{\beta}$) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on $TGF-{\beta}$ signaling pathway and inhibit each other to affect the hair growth.

Methylation of the Mouse Dlx5 and Osx Gene Promoters Regulates Cell Type-specific Gene Expression

  • Lee, Ji Yun;Lee, Yu Mi;Kim, Mi Jin;Choi, Je Yong;Park, Eui Kyun;Kim, Shin Yoon;Lee, Sam Poong;Yang, Jae Sup;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.182-188
    • /
    • 2006
  • Dlx5 and Osx are master regulatory proteins essential for initiating the cascade leading to osteoblast differentiation in mammals, but the mechanism of osteoblast-specific expression is not fully understood. DNA methylation at CpG sequences is involved in tissue and cell type-specific gene expression. We investigated the methylation status of Dlx5 and Osx in osteogenic and nonosteogenic cell lines by methylationspecific PCR (MSP). The CpG dinucleotides of the Dlx5 and Osx promoter regions were unmethylated in osteogenic cell lines transcribing these genes but methylated in nonosteogenic cell lines. Treatment of C2C12 cells with 5-AzadC induced dose- and timedependent expression of Dlx5 and Osx mRNA by demethylating the corresponding promoters. Furthermore the mRNAs for the osteoblast markers ALP and OC, which were undetectable in untreated cells, gradually increased after 5-AzadC treatment. In addition, BMP-2 stimulation induced Dlx5 expression by hypomethylating its promoter. These findings suggest that DNA methylation plays an important role in cell type-specific expression of Dlx5 and Osx.

Investigation of Antioxidant Activity of Houttuyniae Herba and its Effect on 5α-reductase Gene Expression in Dermal Papilla Cells (어성초(魚腥草)의 항산화 효능 확인 및 모유두 세포의 5α-reductase 유전자 발현에 미치는 영향)

  • Cho, Nam Joon;Lee, Byeong Kwon;Lee, Woong Hee;Kim, Kee Kwang;Han, Hyo Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.356-361
    • /
    • 2017
  • Houttuyniae Herba is widely used as a cosmetic for enhancing hair growth, and study on promoting mouse hair growth has also been reported. However, studies on the effects of the Houttuyniae Herba on dermal papilla (DP) cells, which play an important role in hair growth, are not well known. For this reason, we studied the effect of Houttuyniae Herba on DP cells. The strong antioxidant activity of Houttuyniae Herba was confirmed by ABTS assay. In the MTS assay, cell viability was reduced to 94.5% in DP cells by treatment of 2 mg/ml concentration of Houttuyniae Herb and cytotoxicity was not observed at 1 mg/ml concentration. The mRNA expression levels of Bone morphogenetic pretein (BMP6), fibroblast growth factor 7 (FGF7), FGF10, and ${\beta}$-galactosidase genes, which are involved in hair growth cycle and hair loss induction, were measured by quantitative RT-PCR after Houttuyniae Herbtreatment. Houttuyniae Herb did not significantly affect mRNA expression of BMP6, FGF7, FGF10, and ${\beta}$-catenin, which are important factors for regulating the hair cycle, including type 1 $5{\alpha}$-reductase. However, mRNA expression of type 2 $5{\alpha}$-reductase, the major cause of male hair loss, was significantly reduced to 56.1% by treatment of Houttuyniae Herbtreatment. Taken together, these results suggest that the Houttuyniae Herbtreatment can help to treat lair loss through removing free radicals and suppression of the expression level of type 2 $5{\alpha}$-reductase in DP cells.

Comparative Gene-Expression Analysis of Periodontal Ligament and Dental Pulp in the Human Permanent Teeth (사람 영구치에서 치주인대 및 치수 조직의 유전자 발현에 대한 비교 연구)

  • Lee, Suk Woo;Jeon, Mijeong;Lee, Hyo-Seol;Song, Je Seon;Son, Heung-Kyu;Choi, Hyung-Jun;Jung, Han-Sung;Moon, Seok-Jun;Park, Wonse;Kim, Seong-Oh
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.166-175
    • /
    • 2016
  • There is no genetic activity information with the functions of dental pulp and periodontal ligament in human. The purpose of this study was to identify the gene-expression profiles of, and the molecular biological differences between periodontal ligament and dental pulp obtained from human permanent teeth. cDNA microarray analysis identified 347 genes with a fourfold or greater difference in expression level between the two tissue types 83 and 264, of which were more plentiful in periodontal ligament and dental pulp, respectively. Periodontal ligament exhibited strong expression of genes related to collagen synthesis (FAP), collagen degradation (MMP3, MMP9, and MMP13), and bone development and remodeling (SSP1, BMP3, ACP5, CTSK, and PTHLH). Pulp exhibited strong expression of genes associated with calcium ions (CALB1, SCIN, and CDH12) and the mineralization and formation of enamel and dentin (SPARC/SPOCK3, PHEX, AMBN, and DSPP). Among these genes, SPP1, SPARC/SPOCK3, AMBN, and DSPP were well known in dental research. However, the other genes are the newly found and it may help to find a good source of regenerative therapy if further study is performed.

THE EXPRESSION OF MSX GENES DURING EARLY CRANIAL SUTURE EMBRYOGENESIS (두개골 봉합부의 초기 형태발생과정에서 Msx 유전자들의 발현양상)

  • Lee, Sang-Youp;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.171-180
    • /
    • 2003
  • The development of calvarial bones is tighly co-ordinated with the growth of the brain and needs of harmonious interactions between different tissues within the calvarial sutures. Premature fusion of cranial sutures, known as craniosynostosis, presumably involves disturbance of these interactions. Mutations in the homeobox-containg gene Msx2 cause human craniosynostosis syndrome. Msx genes, which are consist of Msx1, Msx2 and Msx3, are homeobox-containg transcripton factors, and were originally identified as homologue of Drosophila msh(muscle segment homeobox) gene. Msx1 and Msx2 genes, expressed mostly in overlapping patterns at multiple site of tissue interactions during vertebrate development, are associated with epithelial-mesenchymal interactions during organogenesis, targets of BMP and FGF signaling. To elucidate the function of Msx genes in the early morphogenesis of mouse cranial suture, we analyzed the expression of them by in situ hybridization during embryonic(E15-E18) stage, and did vivo experiments in E15.5 mouse using rhBMP-2, rhFGF-2 protein soaked bead. In the sagittal suture, Msx1 was expressed in the mesenchyme of suture and the dura mater, Msx2 was intensely expressed in the sutural mesenchyme and the dura mater. In the coronal suture both of Msx genes were expressed intensely in the sutural mesenchyme and expressed in the periosteum also. Msx1 had a broader expression pattern than Msx2. BMP2 beads induced expression of both Msx1 and Msx2, FGF2 beads induced expression of Msx1, but not Msx2. Taken together, these data suggest that Msx1 and Msx2 genes have important role in regulating the morphogenesis and maintenance of embryonic cranial suture. Both of Msx genes are expressed similarly but because of their upstream signaling, they function dependently or cooperatively according to change of signaling molecule.

  • PDF

Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis

  • Umair, Zobia;Kumar, Shiv;Kim, Daniel H.;Rafiq, Khezina;Kumar, Vijay;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1061-1071
    • /
    • 2018
  • From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.