• Title/Summary/Keyword: BMMS

Search Result 59, Processing Time 0.023 seconds

Inhibitory Effect of Paeoniae Radix Alba Ethanol Extract on Osteoclast Differentiation and Formation (백작약 에탄올 추출물의 파골세포 분화 및 생성 억제 작용)

  • Park, Bora;Park, Geun Ha;Gu, Dong Ryun;Ko, Wonmin;Kim, Youn-Chul;Lee, Seoung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • Bone destruction is a pathological symptom of some chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis. Inflammation-induced bone loss of these diseases results from increased number and activity of osteoclasts. Paeoniae Radix Alba has been used in korean traditional medicine to treat disease including inflammation, gynecopathy and various pain. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects of Paeoniae Radix Alba ethanol extract (PRAE) on receptor activator of nuclear factor-kappa B ligand (RANKL)-mediated osteoclast differentiation and formation. Osteoclast differentiation and formation were measured by tartrate resistant acidic phosphatase (TRAP) staining and TRAP solution assay. The treatment of PRAE on bone marrow derived macrophages (BMMs), which is known as osteoclast precursor cells, inhibited osteoclast differentiation and formation in a dose-dependent manner. In addition, the expression of osteoclast differentiation marker genes was suppressed by PRAE treatment. This inhibitory effect of PRAE resulted from significant repression of c-Fos expression, and subsequent reduction of NFATc1 expression which was previously reported as a master transcription factor for osteoclastogenesis in vitro and in vivo. These results demonstrate that PRAE negatively regulates osteoclast differentiation and formation and suggest that PRAE can be used as a potent preventive or therapeutic candidate for various bone diseases, such as postmenopausal osteoporosis, periodontitis and rheumatoid arthritis.

Osteoporotic bone phenotype in Mats1/2 double-mutant mice (Mats1과 Mats2 이중결손 유전자 돌연변이에 의한 골감소증 기전에 대한 연구)

  • Oh, Juhwan;Choi, YunJeong;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.6
    • /
    • pp.159-165
    • /
    • 2018
  • The Hippo pathway was originally discovered in Drosophila by genetic screening and it has been shown to be conserved in various organisms including human. Until now, the essential roles of Hippo pathway in regulating cell proliferation, apoptosis, tumorigenesis, and organ size control is extensively studied. Currently, Mats1/2 (Mob1a/1b), one of the important components in Hippo pathway, mutant mice were generated which has abnormal phenotype such as resistance to apoptosis and spontaneous tumorigenesis. Of note, Mats1/2 mutant mice also showed dental malocclusion. Therefore, in this study, we have evaluated the bone phenotype of Mats1/2 mutant mice. Although the mRNA expressions of Mats1 or Mats2 were observed in both osteoclastogenesis and osteoblastogenesis, the increase of Mats1 level was most prominent during osteoblastogenesis. The RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs) was unaltered upon Mats1/2 mutation; however, the osteoblast differentiation using calvarial pre-osteoblasts was significantly reduced in Mats1/2 mutant mice compare to that of wild type mice. In accordance with in vitro results, Mats1/2 mutant mice showed decreased bone volume as well as increased trabecular separation in ${\mu}CT$ analyses. These results may provide novel prospect of the probable linkage between Hippo pathway and bone homeostasis.

Inhibitory Effect of Osteoclastogenesis and Estradiol Activity of Myelophycus simplex Extract (바위수염 추출물의 파골세포 분화 억제 및 에스트라디올 활성 평가)

  • Ha, Hyun Joo;Lim, Hyung Jin;Kim, Min Gyeong;Bak, Seon Gyeong;Rho, Mun-Chual;Cheong, Sun Hee;Lee, Seung-Jae;Lee, Sang-Hoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • In the present study, the estrogenic activity and anti-osteoclastogenic activity of the Myelophycus simplex extract were evaluated using T47D-Kbluc cells and bone marrow-derived macrophages (BMMs). As a result of the measurement of the estrogenic activity in the T47D-Kbluc cell line, the Myelophycus simplex extract showed increased estrogenic activity in a dose-dependent manner in association with its concentration. To confirm the regulatory effect of the Myelophycus simplex extract on the estrogen-responsive gene, the Myelophycus simplex extract showed a similar tendency to estradiol: the expression of estrogen receptor 1 (ESR1) was significantly decreased while the expression of estrogen receptor 2 (ESR2) was increased. Furthermore, the Myelophycus simplex extract exhibited an inhibitory effect on osteoclast differentiation. In conclusion, these Myelophycus simplex extracts might be regarded as candidates for further studies or the development of functional food products or medicine to prevent or avoid postmenopausal symptoms for women.

Effects of Compounds Isolated from an Ethanol Extract of the Sclerotium of Wolfiporia hoelen on Osteoblast Differentiation and Osteoclast Formation (복령 균핵의 에탄올 추출물에서 분리한 화합물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과)

  • Sora Lee;Seokju Kim;Bowook Moon;Sik-Won Choi;Rhim Ryoo;Hyung Won Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.73-87
    • /
    • 2024
  • Wolfiporia hoelen (Fr.) Y.C.Dai & V. Papp, commonly known as Poria cocos, is a significant traditional herb used for medicinal and culinary purposes Asian and European countries. Many studies have confirmed that the main components of W. hoelen have pharmacological activities and thatits extract has been shown to affect bone metabolism. This study aimed to the potential of a 50% ethanol extract of the sclerotium of W. hoelen for preventing and treating bone diseases. The ethanol extract was systematically fractionated using n-hexane, dichloromethane, and ethyl acetate. The dichloromethane fraction caused an approximately 29% increase in alkaline phosphatase (ALP) differentiation activity in C2C12 cells compared to the control. Four compounds isolated from this active dichloromethane fraction were identified through instrumental analysis and literature references as 3α-dehydrotrametenolic acid, ergosterol, pachymic acid, and dehydrotumulosic acid. All four compounds were evaluated at increasing concentrations (1, 3, 10, 30, and 100 μM) to determine their effects on ALP differentiation activity in C2C12 cells and RANKL-induced inhibition activity in bone marrow macrophages (BMMs), with a concurrent assessment of cytotoxicity at these concentrations. At a concentration of 3 μM, dehydrotumulosic acid caused a 160% increase in ALP activity, 24% higher than in the BMP-2 control. BMMs treated with dehydrotumulosic acid at concentrations between 10 and 100 μM showed a substantial 15-86% decrease in RANKL-induced inhibition activity compared to the control, with distinct patterns of RANKL inhibition and cytotoxicity observed at 10 μM. These findings suggest that the ethanol extract from the sclerotium of W. hoelen has potential to modulate bone-cell differentiation, while highlighting the possible benefits of dehydrotumulosic acid isolated from the dichloromethane fraction of W. hoelen for preventing and treating osteoporosis.

Hexane-Soluble Fraction of the Common Fig, Ficus carica, Inhibits Osteoclast Differentiation in Murine Bone Marrow-Derived Macrophages and RAW 264.7 Cells

  • Park, Young-Ran;Eun, Jae-Soon;Choi, Hwa-Jung;Nepal, Manoj;Kim, Dae-Keun;Seo, Seung-Yong;Li, Rihua;Moon, Woo-Sung;Cho, Nam-Pyo;Cho, Sung-Dae;Bae, Tae-Sung;Kim, Byung-Il;Soh, Yun-Jo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.417-424
    • /
    • 2009
  • Osteoclasts, derived from multipotent myeloid progenitor cells, play homeostatic roles in skeletal modeling and remodeling, but may also destroy bone in pathological conditions such as osteoporosis and rheumatoid arthritis. Osteoclast development depends critically on a differentiation factor, the receptor activator of NF-${\kappa}B$ ligand (RANKL). In this study, we found that the hexane soluble fraction of the common fig Ficus carica (HF6-FC) is a potent inhibitor of osteoclastogenesis in RANKL-stimulated RAW264.7 cells and in bone marrow-derived macrophages (BMMs). HF6-FC exerts its inhibitory effects by suppression of p38 and NF-${\kappa}B$ but activation of ERK. In addition, HF6-FC significantly decreased the expression of NFATc1 and c-Fos, the master regulator of osteoclast differentiation. The data indicate that components of HF6-FC may have therapeutic effects on bone-destructive processes such as osteoporosis, rheumatoid arthritis, and periodontal bone resorption.

Effect of Saururus Chinensis in RANKL-induced Osteoclast Differentiation (삼백초 추출물이 뼈 파괴세포 분화에 미치는 효과)

  • Kim, Jung Young;Hyuk, Jungjong;Lee, Myeung Su;Lee, Chang Hoon;Kim, Yun Kyung;Jeon, Byung Hoon;Kwak, Han Bok;Kim, Ju-Young;Choi, Min-Kyu;Kim, Jeong Joong;Oh, Jaemin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.869-873
    • /
    • 2012
  • Balance between bone-forming osteoblasts and bone-resorbing osteoclasts is important in bone homeostasis. Unusual balance between bone-forming osteoblasts and bone-resorbing osteoclasts leads to bone diseases, such as osteoporosis. Saururus chinensis has been widely used in oriental medicine. Saururus chinensis has been known that has antioxidant and anticancer effect. But, the effect of Saururus chinensis in osteoclast differentation remains unknown. We examined the effect of Saururus chinensis in receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. From the results of our study, we found that saururus chinensis clearly inhibited RANKL-induced osteoclast differentiation in bone marrow macrophages (BMM) in a dose dependent manner without toxicity. Saururus chinensis inhibited the phosphorylation of JNK, P38, AKT, and ERK induced by RANKL. The mRNA expression of NFATc1, TRAP, and OSCAR induced by RANKL was inhibited by Saururus chinensis treatment. Moreover Saururus chinensis suppressed the protein expression of c-Fos and NFATc1 in BMMs treated with RANKL. These results suggest that Saururus chinensis may be a useful drug in the treatment of bone-related disease.

Inhibitory Effects of Ssangbohwan on Osteoclast Differentiation and Bone Resorption (쌍보환 추출물의 파골세포 분화 억제와 골 흡수 억제효과)

  • Kim, Seong Joung;Lee, Jeong Ju;Kim, June Hyun;Jo, So Hyun;Park, Min Cheol;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.69-81
    • /
    • 2015
  • Purpose : The first purpose of this study is to find out whether the water extract of Rehmanniae Radix Preparat(RRP), Cuscutae Semen(CS) and their combination(Ssangbohwan, SBH) have the effect of suppressing Receptor activator of nuclear factor kappa-B ligand(RANKL)-induced osteoclast differentiation. The second purpose of this study is to find out whether the water extract of RRP, CS and SBH have the effect of inhibiting osteoporosis in an osteoporosis model induced by lipopolysaccharide(LPS). Methods : After promoting differentiation of osteoclasts by treating the RANKL, we observed the effect by the administration of RRP, CS and SBH. In addition, by means of Reverse transcription polymerase chain reaction(RT-PCR), we assayed mRNA expression levels of NFATc1, c-Fos, TRAP and GAPDHS(Glyceraldehyde-3-phosphate dehydrogenase, spermatogeni) from bone marrow macrophages(BMMs). Similarly, the protein expression levels of NFATc1 (Nuclear factor of activated T-cells, cytoplasmic1), C-Fos, MAPKs(Mitogen-activated protein kinases) and ${\beta}$-actin in cell lysates were analyzed by means of Western Blotting. Finally, we determined the anti-osteoporotic effects of RRP, CS and SBH, through the use of Lipopolysaccharide-induced bone-loss mouse. Results : RRP, CS and SBH showed remarkable inhibitive effect on RANKL-treated osteoclast differentiation without cytotoxicity. SBH inhibited the phosphorylation of p38, Jun N-terminal kinases(JNK), and I-${\kappa}B$ and down-regulated the induction of c-Fos and NFATc1 by RANKL. RRP, CS suppressed degradation of I-${\kappa}B$, but it did not affect c-Fos and NFATc1 by RANKL. Lastly, in vivo data showed that RRP and SBH prevented bone erosion by LPS treatment. Conclusions : These results demonstrate SBH can be effective remedy for bone-loss diseases such as osteoporosis.

Inhibitory Effects of Water Extracts of Eucommiae Cortex and Psoraleae Semen Alone and in Combination on Osteoclast Differentiation and Bone

  • Park, Jin Soo;Park, Ga Young;Choi, Han Gyul;Kim, Seong Joung;Kim, June Hyun;park, Min Cheol;Kim, Yun Kyung;Han, Sang Yong;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.34 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Objectives : The purpose of this study was to evaluate the effects of water extracts of Eucommiae cortex (EC), Psoraleae semen (PS), and their combination on receptor activator of nuclear factor-kappa-B ligand (RANKL)-induced osteoclast differentiation. Methods : We assayed the protein expression levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), c-Fos, mitogen-activated protein kinases (MAPKs), and ${\beta}-actin$ in cell lysates using western blotting. Similarly, mRNA expression levels of NFATc1, c-Fos, tartrateresistant acid phosphate (TRAP), and glyceraldehyde-3-phosphate dehydrogenase, spermatogeni (GAPDHS) from bone marrow macrophages (BMMs) were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, we determined the anti-osteoporotic effects of the water extracts of EC, PS, and their combination in a lipopolysaccharide (LPS)-induced bone-loss mouse model. Results : The in vitro data revealed showed that the combination of EC and PS extract showed a more remarkable inhibition of osteoclast differentiation than each herb did alone. The combination downregulated the induction of c-Fos, NFATc1, and TRAP by suppressing the phosphorylation of p38 and c-Jun N-terminal kinases (JNKs) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). Lastly, the in vivo data showed that PS reduced the LPS-induced bone erosion. Conclusion : The result of this study suggests that EC and PS could be potential therapeutic agents for bone loss diseases such as osteoporosis.

Effect of remifentanil on pre-osteoclast cell differentiation in vitro

  • Jeon, Hyun-Ook;Choi, In-Seok;Yoon, Ji-Young;Kim, Eun-Jung;Yoon, Ji-Uk;Cho, Ah-Reum;Kim, Hyung-Joon;Kim, Cheul-Hong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Background: The structure and function of bone tissue is maintained through a constant remodeling process, which is maintained by the balance between osteoblasts and osteoclasts. The failure of bone remodeling can lead to pathological conditions of bone structure and function. Remifentanil is currently used as a narcotic analgesic agent in general anesthesia and sedation. However, the effect of remifentanil on osteoclasts has not been studied. Therefore, we investigated the effect of remifentanil on pre-osteoclast (pre-OCs) differentiation and the mechanism of osteoclast differentiation in the absence of specific stimulus. Methods: Pre-OCs were obtained by culturing bone marrow-derived macrophages (BMMs) in osteoclastogenic medium for 2 days and then treated with various concentration of remifentanil. The mRNA expression of NFATc1 and c-fos was examined by using real-time PCR. We also examined the effect of remifentanil on the osteoclast-specific genes TRAP, cathepsin K, calcitonin receptor, and DC-STAMP. Finally, we examined the influence of remifentanil on the migration of pre-OCs by using the Boyden chamber assay. Results: Remifentanil increased pre-OC differentiation and osteoclast size, but did not affect the mRNA expression of NFATc1 and c-fos or significantly affect the expression of TRAP, cathepsin K, calcitonin receptor, and DC-STAMP. However, remifentanil increased the migration of pre-OCs. Conclusions: This study suggested that remifentanil promotes the differentiation of pre-OCs and induces maturation, such as increasing osteoclast size. In addition, the increase in osteoclast size was mediated by the enhancement of pre-OC migration and cell fusion.