• Title/Summary/Keyword: BLDC stator

Search Result 103, Processing Time 0.024 seconds

Reduction of Cogging Torque in BLDC Motors (BLDC 전동기의 코깅 토오크 저감설계)

  • Kim, Suk-Ki;Chung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.83-85
    • /
    • 1995
  • In a permanent magnet motor, cogging torque arises from the intersection of the rotor magnets with the steel teeth on the stator. This paper describes design measures which can be taken to reduce the cogging torque. In this paper for the optimal shape design of brushless DC motor, evolution strategy is investigated to find the dimension of stator of BLDC motor that minimizes the cogging torque. The corresponding field analysis is performed by two-dimensional finite element method.

  • PDF

High-Speed BLDC Motor Design for Suction Fan and Impact on the Loss caused by Core Welding

  • Hong, Hyun-Seok;Kim, In-Gun;Lee, Ho-Joon;Go, Sung-Chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper deals with the effects of welding, which is done to fix the stator stack, on a motor in case of fabricating a prototype motor that is manufactured in a small quantity. In the case of a small motor, the stator is designed and fabricated with the segmented core as a way to raise the fill factor of winding wire to the utmost within a limited size. In case of fabrication by welding both inside and outside of the stator in order to fix the segmented-core stator, the effects of stack are ignored, and the eddy current loss occurs. This paper performed the no-load test on an IPM-type BLDC motor for driving the suction fan of a vacuum cleaner, which was manufactured by using a segmented-core stator. As a result of the test, it was found that input power more than expected was supplied. To analyze the effects of welding by using the finite element analysis method and verify them experimentally, a stator was re-manufactured by bonding, and input power supplied during the no-load test was compared.

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 Slotless PM BLDC 전동기의 속도제어)

  • Lee S. J.;Yoon Y. H.;Woo M. S.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.33-37
    • /
    • 2004
  • Slotless Permanent magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and high power density has been more widely used in industrial and automatic machine. Generally, PM BLDC meter is necessary that the three Hall-ICs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in this motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if only we used one Hall-IC, we estimate information of the others phase in sequence through a revolving rotor. This paper identified the characteristics and performance by using one Hall-IC for the 3 phase PM BLDC whose six stator and two rotor designed.

  • PDF

Reducing the Cogging toque of IPM type BLDC Motor according to the Flux barrier shape (IPM type BLDC 전동기의 자속장벽 설치에 따른 코깅 토크 저감)

  • Yang, Byoung-Yull;Yun, Keun-Young;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.67-69
    • /
    • 2004
  • This paper describes an approach to design a interior permanent magnet motor(IPM motor) for the reduction of cogging torque. The magnitude of the torque ripple and cogging torque in a interior permanent magnet motor(IPM motor) are generally dependent on several major factors: the shape of stator tooth tip, slot opening width, air gap length, the shape of barrier preventing flux leakage of magnets, magnet configuration and magnetization distribution or magnet poles. In this paper, the IPM BLDC motor is designed considering a saturated leakag flux between the barriers on the rotor for increasing the efficiency and decreasing the magnitude of the cogging torque. Analytical model is developed for the IPM BLDC motor with a concentrated winding stator. The results verifies that the proposed design approach is very efficient and effective in reducing the cogging torque and the torque ripple of the IPM BLDC motor to be used in an electric vehicle.

  • PDF

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor with Cooling Blades (냉각날개를 갖는 외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Wang, Se-Myung;Shim, Ho-Kyung;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.772-779
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type BLDC motor are numerically analyzed using three-dimensional turbulence modeling. On the rotor of the BLDC motor, cooling blades and cooling holes are existed for the enhanced cooling performances. Rotating the blades and holes generates axial air flow streaming into inner rotor side and passing through stator slots, which cools down stator by forced convection. Operating tests are performed and the numerical temperature fields are found to be in good agreement with experimental results. A new design of the BLDC motor has also been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes and cooling blades, and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

The Stator Design of BLDC for reducing the Cogging Torque (BLDC 전동기의 코깅토크 저감을 위한 고정자 설계)

  • Ryu, D.I.;Lim, S.B.;Kim, K.C.;Won, S.H.;Lee, J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.767-768
    • /
    • 2006
  • Cogging torque is produced in a permanent magnet machine by the magnetic attraction between the rotor-mounted permanent magnets and the stator. It is an undesired effect that contributes to the machines' output ripple, vibration, and noise. This paper presents the stator design for reducing cogging torque in the BLDC motor by using the DOE(Design of Experiments). The cogging torque is computed by using a two-dimensional finite element analysis.

  • PDF

A Magnetostrictive Force and Vibration Mode Analysis of 3 kW BLDC Motor by a Magneto-Mechanical Coupling Formulation

  • Shin, Pan-Seok;Cheung, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.76-80
    • /
    • 2011
  • This paper proposes a method to calculate magnetostrictive forces, displacement, and vibration modes of a large-scale Brushless DC(BLDC) motor by using a magneto-mechanically strong coupling formulation. The force is calculated using the energy method with magnetostrictive stress tensor. The mechanical vibration modes are also analyzed by using the principle of Hamilton and the calculated magneto-elastic forces acting on the surfaces of the stator. To verify the algorithm, 3 MW BLDC motor is simulated, and the forces, displacements, and vibration modes are calculated. The result shows that the mechanically stressed core has more deformation or displacements than those of the normal condition.

A Study on the Reduction of Cogging Torque of Outer-Rotor Type BLDC Motor for Washing Machines (세탁기용 외전형 BLDC 전동기의 코깅 토오크 저감에 관한 연구)

  • Kim Jae-Min;Chang Cheul-Hyeok;Chung Tae-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.222-230
    • /
    • 2005
  • This paper deals with the reduction of cogging torque of a outer-rotor type BLDC motor mainly used for washing machines. The motor comprises permanent magnet outer-rotor and stator with coils and core. This structure inherently produces vibration and cogging torque because of uneven reluctance according to rotation of the rotor. Up to now, adopted a type of 24 magnet pole and 36 slot-stator. This generates high main torque but accompanies comparatively large cogging torque. This paper proposes a 32-pole 36-slot type motor which reduces cogging torque remarkably. The influence of cogging torque is varied according to pole-slot combinations. The characteristic of the motor was obtained by a two-dimensional finite element method coupled with a drive circuit. The performance of the proposed model is superior to that of the existing model because of the reduction of torque ripple and the improvement of back ernf wave form.

Low Cost Design Study of Brushless DC Motor for Electric Water Pump Application

  • Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.942-949
    • /
    • 2014
  • We studied about the rotor design change using a Ferrite ring magnet to reduce material cost in the condition of the same stator core design. However, this design direction has many weak points such as the decrease of BEMF, the low maximum output, the irreversible demagnetization characteristics of a permanent magnet and so on. In order to mitigate such disadvantages, an optimization design of the BLDC motor has been developed by changing each design parameter and by improving the electromagnetic structure. In the proposed water pump SPM BLDC motor using Ferrite magnet, the outer and inner diameter of stator is fixed to the value of the conventional IPM BLDC motor using Nd-Fe-B magnet. The design specification requirements should be satisfied with the same output power and efficiency characteristics in the same dimension. As a result of this study, the design comparison results considering driving performances and material cost are represented. Through the actual experiment with the prototype of the designed motor, the simulations results are verified.

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 슬롯리스 PM BLDC 전동기의 속도제어)

  • Yoon Y. H.;Kim Y. C.;Lee S. S.;Won C. Y.;Choe Y. Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.536-543
    • /
    • 2004
  • Slotless Permanent Magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and power density has been more widely used In Industrial and factory machine. Generally, PM BLDC meter is necessary that the three Hall-lCs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in PM BLDC Motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if it used only one Hall-IC, we can estimate information of the others phase in sequence through a rotor This paper identified the characteristics and performance by using one Hall-IC with the 3-phase, 2-pole, 6-slot PM BLDC motor.