• Title/Summary/Keyword: BIRC6

Search Result 3, Processing Time 0.016 seconds

Inhibitors of apoptosis: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs

  • Yoo, Inkyu;Jung, Wonchul;Lee, Soohyung;Cheon, Yugyeong;Ka, Hakhyun
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.533-543
    • /
    • 2022
  • Objective: Caspase-mediated apoptosis plays a crucial role in the regulation of endometrial and placental function in females. Caspase activity is tightly controlled by members of the inhibitors of apoptosis proteins (IAPs) family. However, the expression and regulation of IAPs at the maternal-conceptus interface has not been studied in pigs. Therefore, we determined the expression of IAP family members baculovirus IAP repeat-containing 1 (BIRC1) to BIRC6 at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs at various stages of the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy and analyzed the expression of IAPs. Furthermore, we determined the effects of the steroid hormones estradiol-17β (E2) and progesterone on the expression of IAPs in endometrial explant tissue cultures. Results: During the estrous cycle, BIRC2 and BIRC5 expression varied cyclically, and during pregnancy, endometrial BIRC1, BIRC2, BIRC3, BIRC4, and BIRC5 expression varied in a stage-specific manner. Conceptus and chorioallantoic tissues also expressed IAPs during pregnancy. The BIRC2 and BIR3 mRNAs were localized to luminal epithelial cells, and BIRC4 proteins to glandular epithelial cells in the endometrium. Exposure of endometrial tissues to E2 increased the expression of BIRC6, while progesterone increased the expression of BIRC1, BIRC4, and BIRC6 in a dose-dependent manner. Conclusion: These results indicated that IAPs were expressed in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in a stage-specific manner. In addition, steroid hormones were found to be responsible for the expression of some IAPs in pigs. Together, the results suggested that IAPs may play important roles in endometrial and placental functions by regulating caspase action and apoptosis at the maternal-conceptus interface.

Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

  • Shin, Ju-Hyun;Min, Sang-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.573-580
    • /
    • 2016
  • Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery.

MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis

  • Wang, Zhiguo;Luo, Hong;Fang, Zehui;Fan, Yanling;Liu, Xiaojuan;Zhang, Yujing;Rui, Shuping;Chen, Yafeng;Hong, Luojia;Gao, Jincheng;Zhang, Mei
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.444-449
    • /
    • 2018
  • Acute myeloid leukemia (AML) is one of the most common hematological malignancies all around the world. MicroRNAs have been determined to contribute various cancers initiation and progression, including AML. Although microRNA-204 (miR-204) exerts anti-tumor effects in several kinds of cancers, its function in AML remains unknown. In the present study, we assessed miR-204 expression in AML blood samples and cell lines. We also investigated the effects of miR-204 on cellular function of AML cells and the underlying mechanisms of the action of miR-204. Our results showed that miR-204 expression was significantly downregulated in AML tissues and cell lines. In addition, overexpression of miR-204 induced growth inhibition and apoptosis in AML cells, including AML5, HL-60, Kasumi-1 and U937 cells. Cell cycle analysis further confirmed an augmentation in theapoptotic subG1 population by miR-204 overexpression. Mechanistically, baculoviral inhibition of apoptosis protein repeat containing 6 (BIRC6) was identified as a direct target of miR-204. Enforcing miR-204 expression increased the luciferase activity and expression of BIRC6, as well as p53 and Bax expression. Moreover, restoration of BIRC6 reversed the pro-apoptotic effects of miR-204 overexpression in AML cells. Taken together, this study demonstrates that miR-204 causes AML cell apoptosis by targeting BIRC6, suggesting miR-204 may play an anti-carcinogenic role in AML and function as a novel biomarker and therapeutic target for the treatment of this disease.