• Title/Summary/Keyword: BIOTECHNOLOGY

Search Result 41,463, Processing Time 0.058 seconds

Study on the Manufacturing Properties of Korean-type Koumiss (한국형 Koumiss제조 특성에 관한 연구)

  • Lee, Jong-Ik;Song, Kwang-Young;Chon, Jung-Whan;Hyeon, Ji-Yeon;Seo, Kun-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.3
    • /
    • pp.367-375
    • /
    • 2011
  • For this study, Korean-type Koumiss was made by the fermentation of mixed cultures, in which yeast, Kuyveromyces, and microflora, Streptococcus thermophiles and Lactobacillus bulgaricus, were inoculated into 10% skimmed milk with added whey powder(control: A, 2%: B, 4%: C, 6%: D, and 8%: E). Fat, protein, lactose, titratable acidity, pH, the number of lactic acid bacteria, the number of yeast, alcohol content, volatile fatty acids, volatile free amino acids and minerals were measured in the products. The results were as follows: As the dosage of whey powder increased, fat increased from 0.74% in the control to 2.30% in sample E, protein increased from 2.95% in the control to 4.39% in sample E and lactose increased from 3.10% in the control to 7.43% in sample E. Titratable acidity and pH increased gradually. The number of lactic acid bacteria increased from $10^9\;cfu/m{\ell}$ in the control to $3.8{\times}10^9\;cfu/m{\ell}$ in sample E, and the number of yeast increased from $6.1{\times}10^7\;cfu/m{\ell}$ in the control to $1.65{\times}10^8\;cfu/m{\ell}$ in sample E, according to the increase of whey powder content. For alcohol content, the average values were 0.863%, 0.967%, 0.890%, 1.290%, and 1.313% for the control and samples B, C, D, and E, respectively. As the dosage of whey powder increased, alcohol content showed a tendency to gradually increase. The average alcohol content of E was 1.313 and this was higher than the alcohol content of Kazahstana-type Koumiss with 1.08%. Sixteen types of free amino acids were detected. Glycine was the lowest in the control at $0.38mg/m{\ell}$ and sample E contained $0.64mg/m{\ell}$. Histidine was also low in the control at $0.42mg/m{\ell}$ and sample E contained $0.65mg/m{\ell}$. On the other hand, glutamic acid was highest at $4.13mg/m{\ell}$ in the control whereas sample E had $6.96mg/m{\ell}$. Proline was also high in the control at $1.71mg/m{\ell}$ in control, but E contained $2.80mg/m{\ell}$. Aspartic acid and leucine were greater in sample E than in the control. For volatile free fatty acids, content generally had a tendency to increase in the control, and samples B, C, D, and E. Content of acetic acid gradually increased from $12,661{\mu}g/100m{\ell}$ in the control to $37,140{\mu}g/m{\ell}$ in sample E. Butyric acid was not detected in the control and was measured as $1,950{\mu}g/100m{\ell}$ in sample E. Caproic acid content was $177{\mu}g/100m{\ell}$ in the control and $812{\mu}g/100m{\ell}$ in sample E, and it increased according to the increase of whey powder content. Valeric acid was measured in a small amount in the control as $22{\mu}g/100m{\ell}$, but it was not detected in any other case. Mineral contents of Ca, P, and Mg increased from 1,042.38 ppm, 863.61 ppm, and 101.28 ppm in the control to 1,535.12 ppm, 1,336.71 ppm, and 162.44 ppm in sample E, respectively. Na content was increased from 447.19 ppm in the control to 1,001.57 ppm in sample E. The content of K was increased from 1,266.39 ppm in the control to 2,613.93 ppm in E. Mineral content also increased with whey powder content. In sensory evaluations, the scores increased as whey powder content increased. Flavor was lowest in the control with 6.3 points and highest in E with 8.2 points. Body and texture were highest at 4.2 points in the control, which did not have added whey powder. In the case of appearance, there were no great differences among the samples.

Burqanism from the Origin of the Pastoral Nomadic Koryo Region and the Vision of Korean Livestock Farming (고려의 원시영역 유목초지, 그 부르칸(불함)이즘과 한국축산의 비전)

  • Chu Chae Hyok
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.1
    • /
    • pp.71-82
    • /
    • 2005
  • Khori(高麗) refers to the Chaabog(reindeer) that live on lichens(蘚) on Mt. Soyon(鮮) in which pastures are the cold and dry plateau of North Eurasia. Thus, the origin region of the Khori or Koguryo that are the ancestors of the reindeer-herding pastoral nomads(馴鹿 遊牧民) can be said to be the Steppe-Taiga-Tundra pastoral areas of North Eurasia and North America. When the pastoral nomads moved on to the great mountain(大山) zone of the Jangbaek(長白) to the Baekdu(白頭) Mountains, they could have been in contact with pastoral farmers or agricultural farmers living there and they became the farmers remaining on agricultural farms. They were the Koryo people, the ancestors of Korea. Staying in one place, they gradually forgot the origin of their reindeer-herding pastoral nomadic history in the Northwest area of Mt. Soyon, the small mountain(小山) zone of the Steppe-Taiga-Tundra pastoral areas. In other words, they lost their identity as reindeer-herding pastoral nomads when they entered the agricultural area after leaving the pastoral area. However, since their basic genes had already formed when they lived on the cold and dry plateau of North Eurasia, it is possible to study their pastoral nomadic history focusing on 'the minority living in the broad area(廣域少數)', by utilizing highly advanced biotechnological science and focusing on genes and information technology innovation, and removing various past hindrances in research. Therefore, it is not so difficult to restore the reindeerherding pastoral nomadic history of the Koguryo(高句麗) people and secure their pastoral nomadic identity, of which the first steps have already been taken into their historical stages. The Eurasian continent and the Korean peninsula, especially the cold and dry plateau of North Eurasia and the Korean peninsula have been closely related to each other ecologically and historically. They can never be a separate space at all. The Eurasian continent lies horizontally east to west and thus, the continent forms an isothermal zone. Also, since the time of producing their own foods, it was relatively easy for people with their technology to move to other places owing to the pastoral nomadic characteristic of mobility. Unlike the Chungyen(中原) region, western Asia and the regions covering the Siberia-Manchu-Korean peninsula where food production revolution was first made were connected to the Mongolian lichens route(蘚苔之路: Ni, ukinii jam) and steppe roads. Although the ecological conditions of nature have changed a bit throughout a long history, it was natural for the many tribes in North Asia living on the largest Steppe-Taiga-Tundra area in the world to have believed 'the legends related to animals in relation to their founders and ancestors(獸祖傳說)'. Assuming that Siberian tigers and the tigers living on Mt. Baekdu were connected ecologically and genetically because of the ecological characteristics of the animals, and their migration from plateau to plateau, we would suspect that the Chosun(朝鮮) tribe living on Mt. Baekdu were ethnically and culturally more closely connected to the farther removed Ural-Altai tribes that lived on the cold and dry plateau region than to the Han(i14;) tribe who lived in Chungyen(中原) that was close to Mt. Baekdu. More evidence is the structure of the Korean language which has the form of 'Subject + Object + Verb', which is assumed to have originated from the speedy lifestyle of the reindeer-herding pastoral nomads. The structure is quite different from that of the Han(漢) language, which is based on agricultural life. Also, it is natural for reindeer riding reindeerherding pastoral nomads or horse-riding sheep-herding pastoral nomads(騎馬, 羊遊牧民) to have held military and political power over the region and eventually to have established an ancient pastoral nomadic empire in the process of their conquest of agricultural regions. The stages for founding global empires in the history of mankind maybe largely divided into two, in terms of ecological conditions and occupations. They are the steppes and the oceans. Of course, the steppe-based empires were established based on the skills to deal with horses and the ability to shoot arrows while riding horses, along with the use of iron ware in the 8th century BC. The steppe-based empires became the foundation for an oceanic empire, which could have been established by the use of warships and warship guns since the 15th Century. Based on those facts, we know that Chosun, Puyo(夫餘), and Koguryo are the products of a developmental process of pastoral nomadic empires on the steppes. Maybe we can easily find the pastoral nomadic identity of the Koguryo more than we expected when we trace the origins and history of the Korean tribe living in the pastures located in the northwest area of Mt. Jangbaek by focusing on pastoral nomadic mobility and organization just as we have investigated the historic origins of Anglo-Saxons in America by focusing on the times before the 15th Century. In the process, we should keep in mind that English culture originated from the Industrial Revolution and was directly delivered to the American continent, although America was far from England and was not an intermediate point on long sojourns either. Further, American culture came back to England in a more advanced form later. The most important thing currently to be resolved is to cause Koreans to look back on their own history in a freer way of thinking and with diverse, profound, and sharp insight, taking away the old and existing conventional recognition that is entangled with complicated interests with Korean people and other countries. The meanings of Chosun, Khori, and Solongos have been interpreted arbitrarily without any historic evidence by the scholars who followed conventional tradition of fixed-minded aristocrats in an agricultural society. If the Siberian cultural properties of the stone age, the earthenware age, the bronze age, and the iron age are analyzed in such a way, archaeological discovery will never be able to contribute to the restoration of the Koguryo's pastoral nomadic identity. One should transcend the errors that tend to interpret the cultural properties discovered in the pastoral nomadic regions as not being differentiated from those of agricultural regions and just interpret them altogether from the agricultural point of view. A more careful intention is required in the interpretation of cultural properties of ancient Korean empires that seem to have been formed due to mutual interactions of pastoral nomadic and agricultural cultures. Also, it is required that the conventional recognition chain of 'reverse-genes' be severed, which has placed more weight on agricultural properties than pastoral nomadic ones, since their settlement on agricultural farms was made after the establishment of their ancient pastoral nomadic empires. There is no reason at all to place priority on stoneware, earthenware, bronze ware, and iron ware than on wooden ware(木器) and other ware which were made of animal skins(皮器), bones and horns(骨角器), in analyzing the history in the regions of reindeer or sheep pastures. Reading ancient Korean history from the perspective of pastoral nomadic history, one feels strongly the instinctive emotions to return to the natural 'mother place'. The reindeer-herding pastoral nomadic identity of the Koguryo people that has been accumulated in volumes in their genes and hidden deep inside and have interacted organically could be reborn with Burqanism(Burqan refers to 不咸 in Chinese), which was their religion by birth and symbolized as the red willow(紅柳=不咸). The mother place of the Koguryo's people is the endless vast green pastures of North Eurasia and North America, where we anticipated the development of Korean livestock farming following the inherent properties in the genes of the reindeer-herding pastoral nomads with Korean ancestors. We anticipate that the place would be the core resource that could contribute to the development of life of living creatures following the inherent properties of their genes and biotechnological factors. In other words, biotechnology used for a search for clues on the well-being of humans could be the fruit brought by Burqanism of the Koguryo people and the fruit of the globalization of Korean livestock farming. It is the Chosun farmer in China come from the vast nomadic reindeer pastures of North Eurasia that resolved the food problem of a billion Chinese people with lowland paddy rice seeds (水稻) by transforming Heilongjiang Province(黑龍江省) into an oceanic lowland paddy rice field(水田). Even Mao Tse-tung(毛擇東) could not resolve the food problem by his revolution campaigns for tens of years. Today is the very time that requires the development of special livestock farming following the inherent properties of the ancient Korean reindeer-herding pastoral nomads that respected the dignity of life on the cold and dry plateau of North Eurasia and the America continent. I suggest that research should be started from the pastures of the Dariganga Steppe in East Mongolia that was the homeland of Hanwoo(韓牛) and the central horse-herding steppe place(牧馬場) of Chingis Khan's Mongolia. The Dariganga Steppe is awash with an affluent natural environment for pastoral nomadic living however, the quality of life of the pastoral nomads there is still low. I suggest we Koreans, the descendents of the Koguryo, should take our first steps for our livestock farming business project and develop the Northern nomadic pastures, here at the pastures of the Dariganga Steppe, which is the Mongolian core place of state-of-the-art technology for military weapons.

Review of the Korean Indigenous Species Investigation Project (2006-2020) by the National Institute of Biological Resources under the Ministry of Environment, Republic of Korea (한반도 자생생물 조사·발굴 연구사업 고찰(2006~2020))

  • Bae, Yeon Jae;Cho, Kijong;Min, Gi-Sik;Kim, Byung-Jik;Hyun, Jin-Oh;Lee, Jin Hwan;Lee, Hyang Burm;Yoon, Jung-Hoon;Hwang, Jeong Mi;Yum, Jin Hwa
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.119-135
    • /
    • 2021
  • Korea has stepped up efforts to investigate and catalog its flora and fauna to conserve the biodiversity of the Korean Peninsula and secure biological resources since the ratification of the Convention on Biological Diversity (CBD) in 1992 and the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits (ABS) in 2010. Thus, after its establishment in 2007, the National Institute of Biological Resources (NIBR) of the Ministry of Environment of Korea initiated a project called the Korean Indigenous Species Investigation Project to investigate indigenous species on the Korean Peninsula. For 15 years since its beginning in 2006, this project has been carried out in five phases, Phase 1 from 2006-2008, Phase 2 from 2009-2011, Phase 3 from 2012-2014, Phase 4 from 2015-2017, and Phase 5 from 2018-2020. Before this project, in 2006, the number of indigenous species surveyed was 29,916. The figure was cumulatively aggregated at the end of each phase as 33,253 species for Phase 1 (2008), 38,011 species for Phase 2 (2011), 42,756 species for Phase 3 (2014), 49,027 species for Phase 4 (2017), and 54,428 species for Phase 5(2020). The number of indigenous species surveyed grew rapidly, showing an approximately 1.8-fold increase as the project progressed. These statistics showed an annual average of 2,320 newly recorded species during the project period. Among the recorded species, a total of 5,242 new species were reported in scientific publications, a great scientific achievement. During this project period, newly recorded species on the Korean Peninsula were identified using the recent taxonomic classifications as follows: 4,440 insect species (including 988 new species), 4,333 invertebrate species except for insects (including 1,492 new species), 98 vertebrate species (fish) (including nine new species), 309 plant species (including 176 vascular plant species, 133 bryophyte species, and 39 new species), 1,916 algae species (including 178 new species), 1,716 fungi and lichen species(including 309 new species), and 4,812 prokaryotic species (including 2,226 new species). The number of collected biological specimens in each phase was aggregated as follows: 247,226 for Phase 1 (2008), 207,827 for Phase 2 (2011), 287,133 for Phase 3 (2014), 244,920 for Phase 4(2017), and 144,333 for Phase 5(2020). A total of 1,131,439 specimens were obtained with an annual average of 75,429. More specifically, 281,054 insect specimens, 194,667 invertebrate specimens (except for insects), 40,100 fish specimens, 378,251 plant specimens, 140,490 algae specimens, 61,695 fungi specimens, and 35,182 prokaryotic specimens were collected. The cumulative number of researchers, which were nearly all professional taxonomists and graduate students majoring in taxonomy across the country, involved in this project was around 5,000, with an annual average of 395. The number of researchers/assistant researchers or mainly graduate students participating in Phase 1 was 597/268; 522/191 in Phase 2; 939/292 in Phase 3; 575/852 in Phase 4; and 601/1,097 in Phase 5. During this project period, 3,488 papers were published in major scientific journals. Of these, 2,320 papers were published in domestic journals and 1,168 papers were published in Science Citation Index(SCI) journals. During the project period, a total of 83.3 billion won (annual average of 5.5 billion won) or approximately US $75 million (annual average of US $5 million) was invested in investigating indigenous species and collecting specimens. This project was a large-scale research study led by the Korean government. It is considered to be a successful example of Korea's compressed development as it attracted almost all of the taxonomists in Korea and made remarkable achievements with a massive budget in a short time. The results from this project led to the National List of Species of Korea, where all species were organized by taxonomic classification. Information regarding the National List of Species of Korea is available to experts, students, and the general public (https://species.nibr.go.kr/index.do). The information, including descriptions, DNA sequences, habitats, distributions, ecological aspects, images, and multimedia, has been digitized, making contributions to scientific advancement in research fields such as phylogenetics and evolution. The species information also serves as a basis for projects aimed at species distribution and biological monitoring such as climate-sensitive biological indicator species. Moreover, the species information helps bio-industries search for useful biological resources. The most meaningful achievement of this project can be in providing support for nurturing young taxonomists like graduate students. This project has continued for the past 15 years and is still ongoing. Efforts to address issues, including species misidentification and invalid synonyms, still have to be made to enhance taxonomic research. Research needs to be conducted to investigate another 50,000 species out of the estimated 100,000 indigenous species on the Korean Peninsula.