• Title/Summary/Keyword: BIOMASS

Search Result 4,841, Processing Time 0.041 seconds

Impact of Elevated Carbon Dioxide, Temperature, and Drought on Potato Canopy Architecture and Change in Macronutrients (상승된 이산화탄소와 온도 그리고 한발 영향에 따른 감자의 군락 형태와 무기영양 변화)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.164-173
    • /
    • 2018
  • Elevated atmospheric carbon dioxide concentration ($CO_2$) is a major component of climate change, and this increase can be expected to continue into the crop and food security in the future. In this study, Soil-Plant-Atmosphere-Research (SPAR) chambers were used to examine the effect of elevated $CO_2$, temperature, and drought on the canopy architecture and concentration of macronutrients in potatoes (Solanum tuberosum L.). Drought stress treatments were imposed on potato plants 40 days after emergence. Under AT+2.8C700 (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$), at maximum leaf area, elevated $CO_2$, and no drought stress, a significant increase was observed in both the aboveground biomass and tuber, and for the developmental stage. Even though $CO_2$ and temperature had increased, AT+2.8C700DS (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$ under drought stress) under drought stress showed that the leaf area index (LAI) and dry weight were reduced by drought stress. At maturity, potatoes grown under $CO_2$ enrichment and no drought stress exhibited significantly lower concentrations of N and P in their leaves, and of N, P, and K in tubers under AT+2.8C700. In contrast, elevated $CO_2$ and drought stress tended to increase the tuber Mg concentration under AT+2.8C700DS. Plants grown in AT+2.8C700 had lower protein contents than plants grown under ATC450 (30-year average temperature at $400{\mu}mol\;mol^{-1}$ of $CO_2$). However, plants grown under AT+2.8C700 showed higher tuber bulking than those grown under AT+2.8C700DS. These findings suggest that the increase in $CO_2$ concentrations and drought events in the future are likely to decrease the macronutrients and protein concentrations in potatoes, which are important for the human diet.

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances (화본과 및 두과 녹비작물 토양환원에 따른 토마토 생육 및 토양 양분수지량 변화)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.343-348
    • /
    • 2008
  • To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.

Size Dependent Analysis of Phytoplankton Community Structure during Low Water Temperature Periods in the Coastal Waters of East Sea, Korea (저수온기 동해연안의 식물플랑크톤 크기에 따른 군집구조)

  • Lee, Juyun;Chang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.168-175
    • /
    • 2014
  • In order to understand the phytoplankton community structure based on their cell size duringlow water temperature periods, we studied 10 stations in the East Sea, Korea on March, 2012. The minimum standing crops of total phytoplankton were $3.4{\times}10^6cells\;L^{-1}$ at the station 5. The maximum values were $7.6{\times}10^6cells\;L^{-1}$ at the station 8, which is two times the amount of the minimum. The carbon mass at the station 4 ($6.3{\times}10^8pg\;L^{-1}$) was more than forty times higher compared with station 5 ($0.08{\times}10^8pg\;L^{-1}$). From these results, we found a significant difference between standing crops and carbon mass which might have caused due to their differences in community structure and cell size. Therefore, we considered the types of plankton biomass to estimate the primary product in the specific location and/or time. The phytoplankton communities were classified in 3 types: microplankton (> $20{\mu}m$), nanoplankton (< $20{\mu}m$) and picoplankton (< $2{\mu}m$). In the case of picoplankton, various morphological types were observed during the study period. These various picoplankton species were further classified as S (spherical), SF (spherical&flagella), O (oval), OF (oval&flagella) or R (rod) type, and we analyzed their community structure based on these categories. The picoplankton was found to be the most dominant type at 8 stations and S type as the most popular. The picoplankton seems to be the significant organism in the marine ecology during low water temperature periods in the coastal waters of East Sea. Therefore, picoplankton \;-with scientific surveys can be considered as the database for their identification. In conclusion, we suggest that cell size of the phytoplankton would be the best criteria to accurately analyze their community structure and to reveal groups having more ecological influence.

Grazing Rate and Pseudofaeces Production of Native Snail Cipangopaludina chinensis malleata Reeve on Toxic Cyanobacterium Microcystis aeruginosa (한국산 논우렁이의 유해조류 섭식율 및 배설물 생산)

  • Hwang, Soon-Jin;Jeon, Mi-Jin;Kim, Nan-Young;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.77-85
    • /
    • 2008
  • Grazing rates (GR) and pseudofaeces production (PFP) of native snail, Chinese mystery snail (Cipangopaludina chinensis malleata Reeve) on natural colonial morphs of Microcystis aeruginosa was measured. C. chinensis was collected from the upstream of the Geum River (Boryeong, Korea), where they co-habituated with Unio douglasiae and Lanceolaria acrorhyncha. The experiments were performed to evaluate the GR and PFP at different conditions such as; incubation time (1, 3, 5, 7, 9 and 11 hr), body size (3 to 6.1 cm, n=28), snail density (0.5, 1, 1.5 and 2.0 ind. $L^{-1}$) and prey concentration (168.3, 336.7, 505.0 and $673.0{\mu}g\;Chl-{\alpha}L^{-1}$). All experiments were triplicated, and conducted in transparent acrylic vessel (3L in volume). Regarding feeding time, a highest GR (0.538L $gAFDW^{-1}h^{-1}$) and PFP $(7.18mgAFDW^{-1})$ appeared at 1hr and 7hr after snail stocking, respectively. Interestingly, the snail, smaller than 4.5cm in body size, showed a wide range of GR ($-4.173{\sim}1.087L\;gAFDW^{-1}h^{-1}$) for the initial period (1 and 4hrs of stocking), compared to those greater than 4.5cm, which showed a stable FR, higher than 0.5L $gAFDW^{-1}h^{-1}$. Upon density effect, the density of 1.5 ind. $L^{-1}$ induced the most effective inhibition on Microcystis biomass with highest PFP. On the prey concentration, highest GR (0.897L $gAFDW^{-1}h^{-1}$) and PFP (3.67 mg $gAFDW^{-1}h^{-1}$) were induced at the level of $168.3{\mu}g\;Chl-{\alpha}L^{-1}$ and $673{\mu}g\;Chl-{\alpha}L^{-1}$, respectively. GR and PFP of this freshwater snail on the cyanobacterial bloom (M. aeruginosa) varied with the feeding conditions, and they were comparatively high for a short period of time less than 7hrs regardless of the stocking condition. Our results suggest that this freshwater snail has a potential to control cyanobacterial bloom when provided with suitable condition.

Length-Weight Relations and Condition Factor (K) of Zacco platypus Along Trophic Gradients in Reservoir Ecosystems (인공호의 부영양화에 따른 피라미(Zacco platypus) 개체군의 전장-체중 관계 및 비만도 지수)

  • Ko, Dae-Geun;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.174-189
    • /
    • 2012
  • The objective of this study was to determine the weight-length relations and condition factor (K) of Zacco platypus, along the trophic gradients from oligotrophic to eutrophic state in six reservoir ecosystems ($B_aR$, $Y_yR$, $J_yR$, $G_pR$, $Y_dR$, and $M_sR$), during 2008~2010. The species was selected as a sentinel species for the study, due to its wide distribution and wide trophic gradient. The analysis of trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (Chl-a), indicated that reservoirs of $Y_yR$ and $B_aR$ were classified as to be in an oligotrophic state (30~40), the $J_yR$ and $G_pR$ as mesotrophic (40~50), and the $Y_dR$ and $M_sR$ as eutrophic state (50~70). Total 47 species and 26,226 individuals were sampled from 6 reservoirs and sensitive species dominated in the oligotrophic reservoirs ($Y_yR$ and $B_aR$). In the mean time, the tolerant speciesdominated the community in the mesotrophic ($J_yR$ and $G_pR$) and eutrophic ($Y_dR$ and $M_sR$) reservoirs. Regression analysis of body weight, against the total length, indicated that the regression coefficient (b value) was lower in the oligotrophic reservoir (2.77~2.79) than the mesotrophic (3.07~3.17) and eutrophic reservoirs (3.15~ 3.21). This result suggests that the population growth rate Zacco platypus reflected the trophic gradients of the reservoirs. The analysis of condition factor (K) against the total length showed positive slopes (b>3.0) in mesotrophic and eutrophic reservoirs, and a negative slope (b<3.0) in oligotrophic reservoir. The variation of the regression slope of "b" in Z. platypus was accounted for 79.7% [$b=0.012{\times}TSI(TP)+2.395$, p=0.017] by the variation of TSI (TP) and 82.2% [$b=0.013{\times}TSI(Chl-a)+2.36$, p=0.013] by the variation of TSI (Chl-a). The proportion of DELT abnormality increased as the trophic state increases in the reservoirs. The overall data suggest that the growth of the fish populations, based on the length-weight relations and condition factor, reflected the trophic state of nutrient and phytoplankton biomass of the reservoir waters. Thus, in spite of the tolerant characteristics of Z. platypus, hypertrophic states might negatively affect the health of the population.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Ecological Studies on the Improvement of Natural Pasture by Fertilization and Grazing (시비 및 방목에 의한 자연초지의 개량에 대한 생태학적 연구)

  • ;G. Spatz
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.3
    • /
    • pp.138-144
    • /
    • 1986
  • This trial was carried out to find out the methods of improvement of natural pasture by PK-fertilization and sheep grazing. The experimental area covered with the community of Carex ferruginea-dominated and located at the Bavarian Alps in the southern part of Germany. As measuring the changes of the vegetation, the Releve-method, the Point-Intercept-method and the Quadrat-Charting-method were applied. Changes in the ecological evidence of the vegetation were studied during the period from April 1980 to the end of growing season in 1983. 1. The fodder value at the oversown pasture we slightly increased by PK-fertilization with sheep grazing, byt that gradually decreased by grazing without fertilization. 2. The pasture quality at the secondary vegetation was greatly improved as well as that of the oversown pasture in Autumn of the second experimental year by sheep grazing with PK-fertilization, but the fodder value was not like that by grazing without fertilization at the natural pasture. 3. The influence of phosphorus/ potassium-fertilization was much more serious than that of sheep grazing. Sedges almost disappeared due to fertilization, on the other hand grasses and legumes increased distinctly. Sheep grazing without fertilization led to a gradual decrease of legumes. The enormous biomass difference in sedges between the June and October analyses was due to a lack of regenerative capacity. 4. The plant community of Carex ferruginea-dominated before the experiment was successived into Alchemillo-Cynosuretum by PK-fertilization with sheep grazing.

  • PDF

A Late-Maturing and Whole Crop Silage Rice Cultivar 'Mogwoo' (만생종 총체사료용 벼 신품종 '목우')

  • Lee, Sang-Bok;Yang, Chang-Ihn;Lee, Jeom-Ho;Kim, Myeong-Ki;Shin, Young-Seop;Lee, Kyu-Seong;Choi, Yong-Hwan;Jeong, O-Young;Jeon, Yong-Hee;Hong, Ha-Cheol;Kim, Yeon-Gyu;Jung, Kuk Hyun;Jeung, Ji-Ung;Kim, Junhwan;Shon, Ji-Young
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • 'Mogwoo', a new high yield and whole crop silage rice (Oryza sativa L.) cultivar, was developed by the rice breeding team of the National Institute of Crop Science, RDA, Suwon, Korea, from 1999 to 2009, and was released in 2010. It was derived in 1999 from a cross between Dasanbyeo, having a high yield, and Suweon431/IR71190-45-2-1. A promising line, SR25848-C99-1-2-1, selected by the pedigree breeding method, was designated the name of 'Suweon 519' in 2007. This cultivar has about 155 days of growth period from seeding to heading, and is tolerance to lodging, with erect pubescent leaves as well as a long and thick culm. This cultivar has the same number of tillers per hill and higher spikelet numbers per panicle compared to Nokyang. 'Mogwoo' has longer leaves compared with other Tongil-type varieties. This new variety is resistant to grain shattering, leaf blast, bacterial leaf blight, and small brown planthopper. The biomass yield of 'Mogwoo' was 1,956 kg/10a in a regional test over three years. The result shows that 'Mogwoo' is adaptable to central and south-east plain areas of Korea.

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.

Adsorption Characteristics of Heavy Metal Ions onto Chemically Modified Rice Husk and Sawdust from Aqueous Solutions (화학적으로 개질된 왕겨 및 톱밥(미송, 참나무, 포플러)의 중금속 흡착특성)

  • Lee, Hyeon-Yong;Jeon, Choong;Lim, Kyoung-Jae;Hong, Ki-Chan;Lim, Jung-Eun;Choi, Bong-Su;Kim, Nam-Won;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.158-164
    • /
    • 2009
  • Biosorption uses adsorbents derived from non-living biomass and removes toxic metals from industrial wastewater. The objective of this research was to evaluate the potential of low cost biosorbents to remove heavy metal ions (Cd, Cu, Pb and Zn) from aqueous solutions using chemically modified rice husk and saw dust (Pseudotsuga menziesi, Quercus, Populus). Batch-type adsorption experiments were carried out using rice husk and saw dust treated with NaOH and/or tartaric acid in artificial wastewater 100 mg metal/L). The experimental results showed that the adsorption specificity of each biosorbent was Pb > Cu > Cd > Zn irrespective of the types of biosorbents. The adsorption capacity of Pb and Cu onto NaOH-treated sawdust was increased 2${\sim}$3 times compared to the untreated one. In addition, the tartaric acid treatment increased the adsorption capacity of rice husk for Zn and Cd approximately 5${\sim}$10 fold compared to the untreated one. Surface conditions and changes in functional groups by chemical modification of each biosorbent were confirmed by SEM and FT-IR. Overall, the results show that chemical modification increases the metal removal capacity of rice bran and sawdust.