• Title/Summary/Keyword: BIM Classification

Search Result 79, Processing Time 0.048 seconds

Integration of Extended IFC-BIM and Ontology for Information Management of Bridge Inspection (확장 IFC-BIM 기반 정보모델과 온톨로지를 활용한 교량 점검데이터 관리방법)

  • Erdene, Khuvilai;Kwon, Tae Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.411-417
    • /
    • 2020
  • To utilize building information modeling (BIM) technology at the bridge maintenance stage, it is necessary to integrate large quantities of bridge inspection and model data for object-oriented information management. This research aims to establish the benefits of utilizing the extended industry foundation class (IFC)-BIM and ontology for bridge inspection information management. The IFC entities were extended to represent the bridge objects, and a method of generating the extended IFC-based information model was proposed. The bridge inspection ontology was also developed by extraction and classification of inspection concepts from the AASHTO standard. The classified concepts and their relationships were mapped to the ontology based on the semantic triples approach. Finally, the extended IFC-based BIM model was integrated with the ontology for bridge inspection data management. The effectiveness of the proposed framework for bridge inspection information management by integration of the extended IFC-BIM and ontology was tested and verified by extracting bridge inspection data via the SPARQL query.

A study on Analysis of Convergence Trends in Global BIM Market Using Patent Information (BIM 기술 융·복합 수준 분석을 위한 특허 정보 활용 방안)

  • Kim, Taewon;Lee, Jaeho;Lee, Yoonsun;Kim, Jaejun;Lee, Taisik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.95-104
    • /
    • 2017
  • Recently, patent information related to building information modeling (BIM) has been increasing owing to BIM adoption within the construction sector. However, only a few research studies have focused on identifying trends in the domestic and foreign BIM technology based on comprehensive and objective data. Therefore, this study aims to analyze technical competitiveness in the global BIM market using patent information. The patent information is compiled from WIPSON and consists of 73 South Korea, 59 USA, 206 China, and 31 Japan applications. Based on patent information, this study objectively observes domestic and foreign technological BIM trends. As a result of the technology entry analysis by the year, starting from physics (G section) to electricity (H section), the performing operations (B section), and the fixed structure (E section) has been expanded gradually. According to the portfolio analysis, the BIM patent is currently in its early stage of development. Through this research, utilizing patents as a basis for future development will be expected to consult with the differentiation of strategy and setting of direction.

Integrating a Machine Learning-based Space Classification Model with an Automated Interior Finishing System in BIM Models

  • Ha, Daemok;Yu, Youngsu;Choi, Jiwon;Kim, Sihyun;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.4
    • /
    • pp.60-73
    • /
    • 2023
  • The need for adopting automation technologies to improve inefficiencies in interior finishing modeling work is increasing during the Building Information Modeling (BIM) design stage. As a result, the use of visual programming languages (VPL) for practical applications is growing. However, undefined or incorrect space designations in BIM models can hinder the development of automated finishing modeling processes, resulting in erroneous corrections and rework. To address this challenge, this study first developed a rule-based automated interior finishing detailing module for floors, walls, and ceilings. In addition, an automated space integrity checking module with 86.69% ACC using the Multi-Layer Perceptron (MLP) model was developed. These modules were integrated into a design automation module for interior finishing, which was then verified for practical utility. The results showed that the automation module reduced the time required for modeling and integrity checking by 97.6% compared to manual work, confirming its utility in assisting BIM model development for interior finishing works.

Web-based Collaboration Systems for Structural Design: A Review

  • Lim, Jinkang;Lee, Jaewook;Lee, Seunghye;Kim, Han Soo;Jung, Sungwon
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.37-46
    • /
    • 2015
  • In a construction project, collaboration amongst the project participants is a critical factor for high-quality results and successful completion of the project. Owing to the advance of information technologies, web-based systems have become more common in the construction industry, but research and development has been made for only limited areas. For organized and systematic collaboration in various fields, collaboration systems have to be developed in a holistic manner based on diverse needs from the whole construction industry. This study aims to investigate the current status of web-based collaboration systems from structural engineers' perspectives and propose an improvement plan. For a systematic analysis of selected cases, we apply a classification of three developmental stages depending on interoperability and organizational levels: structural design and analysis, collaborative design, and integrated design management. Thereafter, the characteristics of each stage are extracted and comparatively analyzed. Lastly, three functional factors were proposed for the improvement of web-based collaboration systems for structural design.

A Study on the Classification and Causative Factor of Vacant Houses - Focused on the Incheon Metropolitan City - (빈집발생의 유형과 발생에 영향을 미치는 요인에 관한 연구 - 인천광역시 사례를 중심으로 -)

  • Lim, Chang-Il;Na, In-Su
    • Journal of KIBIM
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The vacant houses commonly observed in urban aging are considered to be representative signs of urban decline. Vacant houses are themselves vulnerable to security, and in particular, they are exposed to disasters due to poor management, which can accelerate the decline of the area. This study is to classify the area and analyze the causes and characteristics of the occurrence of vacant houses by type based on the data through the survey on the vacant houses in Incheon. This research analyze vacant house data survey so to characterized and categorized types of vacant houses. The criteria of vacant houses analysis are population density, population growth, aging extent. In conclusion there are four types of region in Incheon area according to housing types, hazard classes, building age and building areas. Type A is inner city, type B is mixed, type C is expandable and type D is unsular types.

Development of Graph based Deep Learning methods for Enhancing the Semantic Integrity of Spaces in BIM Models (BIM 모델 내 공간의 시멘틱 무결성 검증을 위한 그래프 기반 딥러닝 모델 구축에 관한 연구)

  • Lee, Wonbok;Kim, Sihyun;Yu, Youngsu;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.45-55
    • /
    • 2022
  • BIM models allow building spaces to be instantiated and recognized as unique objects independently of model elements. These instantiated spaces provide the required semantics that can be leveraged for building code checking, energy analysis, and evacuation route analysis. However, theses spaces or rooms need to be designated manually, which in practice, lead to errors and omissions. Thus, most BIM models today does not guarantee the semantic integrity of space designations, limiting their potential applicability. Recent studies have explored ways to automate space allocation in BIM models using artificial intelligence algorithms, but they are limited in their scope and relatively low classification accuracy. This study explored the use of Graph Convolutional Networks, an algorithm exclusively tailored for graph data structures. The goal was to utilize not only geometry information but also the semantic relational data between spaces and elements in the BIM model. Results of the study confirmed that the accuracy was improved by about 8% compared to algorithms that only used geometric distinctions of the individual spaces.

Visualization of Tunneling Using a BIM-based 3D Tunnel Model (BIM 기반 3D 터널 모델 가시화에 관한 연구)

  • Yoo, Wan-Kyu;Kim, Jinhwan;Zheng, Xiumei;Kim, Jeong-Heum;Gi, Sang-bok;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.395-401
    • /
    • 2015
  • An investigation of the tunnel face, as well as related measurement data collected during tunneling, is necessary for rock classification and to determine tunnel stability and the cost efficiency of tunneling. However, systematic management and efficient use of such data have yet to be successfully implemented domestically, and the number of experts in this field in Korea is limited. Thus, measures to develop and implement systematic management and effective use of data and expertise are urgently needed. This study aimed to develop measures to efficiently provide online tunnel design and construction data using a building information model (BIM)-based data visualization approach, based on an integrated 3D tunnel model generation module and a web viewer module. The development technology was verified through ○○ tunnel design and construction. Directions for future study and system improvement are proposed.

Development of BIM Templates for Vest-Pocket Park Landscape Design (소공원의 조경설계를 위한 BIM 템플릿 개발)

  • Seo, Young-hoon;Kim, Dong-pil;Moon, Ho-Gyeong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.40-50
    • /
    • 2016
  • A BIM, which is being applied actively to the construction and civil construction industries, is a technology that can maximize efficiency of various sectors from initial planning and design, construction, and maintenance, to demolition; however, it is in the introductory phase in the field of domestic landscaping. In order to introduce and promote BIM in the field of landscape design, this study developed a prototype of a library and template and analyzed the performance of trial application. For the development of a prototype, annotations and types were analyzed from floor plans of existing small parks, and components of landscape template were deduced. Based on this, play facilities, pergola, and benches were madeintofamily and templates, making automatic design possible. In addition, annotations and tags that are often used in landscape design were made, and a 3D view was materialized through visibility/graphic reassignment. As for tables and quantities, boundary stone table, mounding table, summary sheet of quantities, table of contents, and summary sheet of packaging quantities were grouped and connected with floor plans; regarding landscaping trees, classification criteria and name of trees that are suitable for domestic situations were applied. A landscape template was created to enable the library file format(rfa) that can be mounted on a building with BIM programs. As for problems that arose after the trial application of the prepared template, some CAD files could not be imported; also, while writing tables, the basis of calculation could not be made automatically. Regarding this, it is thought that functions of a BIM program and template need improvement.

Development of A Quantitative Risk Assessment Model by BIM-based Risk Factor Extraction - Focusing on Falling Accidents - (BIM 기반 위험요소 도출을 통한 정량적 위험성 평가 모델 개발 - 떨어짐 사고를 중심으로 -)

  • Go, Huijea;Hyun, Jihun;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • As the incidence and mortality of serious disasters in the construction industry are the highest, various efforts are being made in Korea to reduce them. Among them, risk assessment is used as data for disaster reduction measures and evaluation of risk factors at the construction stage. However, the existing risk assessment involves the subjectivity of the performer and is vulnerable to the domestic construction site. This study established a DB classification system for risk assessment with the aim of early identification and pre-removal of risks by quantitatively deriving risk factors using BIM in the risk assessment field and presents a methodology for risk assessment using BIM. Through this, prior removal of risks increases the safety of construction workers and reduces additional costs in the field of safety management. In addition, since it can be applied to new construction methods, it improves the understanding of project participants and becomes a tool for communication. This study proposes a framework for deriving quantitative risks based on BIM, and will be used as a base technology in the field of risk assessment using BIM in the future.

BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization (증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘)

  • Pa, Pa Win Aung;Lee, Donghwan;Park, Jooyoung;Cho, Mingeon;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • Various studies are being actively conducted to show that the real-time visualization technology that combines BIM (Building Information Modeling) and AR (Augmented Reality) helps to increase construction management decision-making and processing efficiency. However, when large-capacity BIM data is projected into AR, there are various limitations such as data transmission and connection problems and the image cut-off issue. To improve the high efficiency of visualizing, a mesh optimization algorithm based on the k-nearest neighbors (KNN) classification framework to reconstruct BIM data is proposed in place of existing mesh optimization methods that are complicated and cannot adequately handle meshes with numerous boundaries of the 3D models. In the proposed algorithm, our target BIM model is optimized with the Unity C# code based on triangle centroid concepts and classified using the KNN. As a result, the algorithm can check the number of mesh vertices and triangles before and after optimization of the entire model and each structure. In addition, it is able to optimize the mesh vertices of the original model by approximately 56 % and the triangles by about 42 %. Moreover, compared to the original model, the optimized model shows no visual differences in the model elements and information, meaning that high-performance visualization can be expected when using AR devices.