• 제목/요약/키워드: BIM(Building Information Modeling)

검색결과 842건 처리시간 0.024초

메타버스의 경험과 기술을 활용한 건축설계 프로세스의 적용가능성에 관한 연구 (A Study on the Applicability of the Architectural design process using the Metaverse Experience and Technology - Case studies of Metaverse Platforms)

  • 전수경;차승현
    • 한국BIM학회 논문집
    • /
    • 제13권2호
    • /
    • pp.16-28
    • /
    • 2023
  • The concept of the Metaverse has been around not only for play but also for daily use. The interest in Metaverse is increasing, and various industries such as medicine, media, and financial started to use the new technology for diverse purposes. In addition, interest in the Metaverse is increasing in the architectural industry, but not much research has been done yet. Recently, some studies started to study focusing on the architectural design of Metaverse and the technological characteristics of Metaverse. However, there are limited studies about the utilization of the Metaverse in the architectural design process or construction process. From this perspective, the study aims to analyze the applicability of the Metaverse in the architectural design process through Metaverse case studies. In order to accomplish the research goal, the study classified user experience and technology of Metaverse in the literature review and Metaverse use in other industries such as commercial, medical, media entertainment, and construction industry. Then, this study analyzes six representative Metaverse platforms according to the application of Metaverse in the architectural design process. Finally, this study discussed the future direction and potential of Metaverse application in the Architectural design process.

건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구 (A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces)

  • 강태욱
    • 한국BIM학회 논문집
    • /
    • 제13권3호
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

컴퓨터 모니터와 혼합현실기기의 3차원 이미지 인지 효과 비교 연구 (A Comparison of the Cognitive Effect of Three-dimensional Images on a Computer Monitor and a Mixed Reality Device)

  • 최성진
    • 한국BIM학회 논문집
    • /
    • 제13권4호
    • /
    • pp.45-53
    • /
    • 2023
  • The educational benefits and potential of XR as a new medium are well recognized. However, there are still limitations in understanding the specific effects of XR compared to the more widely utilized representation of images on computer monitors. This study therefore aims to demonstrate the differences in effectiveness between the two technologies and to draw implications from a cognitive comparison of three-dimensional objects represented on a flat surface and virtually. The study was conducted a quantitative research method with an experiment involving two independent groups, and the results were tested using regression analysis. The results showed that for low-level, two-dimensional objects, the computer monitor method may be more effective, but above a certain level of complexity, the effectiveness of learning through the monitor tends to decrease rapidly. On the other hand, the group that used extended reality technology showed relatively high comprehension compared to the monitor group even as the complexity increased, and in particular, unlike the monitor group's rapidly decreasing comprehension level, the extended reality technology group showed a trend of decreasing comprehension with the level of complexity, suggesting the potential for compatibility and predictability in the use of technology.

효율적인 건축디자인을 위한 가상현실을 활용한 공간경험연구 (Human Experience Using Virtual Reality for an Optimal Architectural Design)

  • 전수경;차승현
    • 한국BIM학회 논문집
    • /
    • 제14권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Virtual reality is one of the key emerging technologies of the 21th century and it has been used in a variety of ways in the fields of architectural research. Virtual reality is presented as an ideal alternative for studying the interaction between space and humans because it provides a realistic spacial experience while allowing experimenters to control environmental variables at a low cost easily. It allowed us to deepen our knowledge of human spatial experience in the built environment. However, existing reviews do not include the following points: 1) previous review research has been focused on using virtual reality technology in construction and engineering, not spatial experience, 2) recently, some review researches started to study the interaction between space and humans in the built environment, however, they do not suggest specific concepts of spatial experience. The present review aims to examine the existing literature about measuring spatial experience using virtual reality in architectural design. The study conducted a systematic qualitative review that analyzes and synthesizes the evolving literature regarding design elements, methodology, and usability. The study concludes with an overall discussion and their potential for providing further directions for future research.

3D 프린팅 콘크리트 배합설계 프로세스에 관한 연구 (Developing Design Process of 3D Printing Concrete Mix Proportion)

  • 진초;박유나;유승규;배성철;김재준
    • 한국BIM학회 논문집
    • /
    • 제7권3호
    • /
    • pp.1-10
    • /
    • 2017
  • 3D concrete printing technology builds structural components layer-by-layer with concrete extruded through a nozzle without using forms. This technology can simplify construction processes by optimizing design flexibility, construction time, and cost. Furthermore, the 3D printing technology is easy to make an irregularly shaped and function embedded building(or object) which is difficult to be constructed by conventional construction method. However, the 3D printing concrete is not suitable for current commercial standard and the material itself. It is also difficult to apply it to the construction site due to the lack of initial strength and the nozzle which is clogged during the process. The research of mix proportion design process for 3D printing concrete which differs from the conventional concrete is necessary in order to solve the problems. This paper aims to calculate the 3D printing concrete mix proportion design process based on the mix materials and performance information derived from the previous researches. Therefore, the usage variation range, mutual influence relationship, and the importance priority of the mix proportion are analyzed. Based on this results, the basic design process of 3D printing concrete which contains planning design phase, basic design phase and validating performance phase is suggested. We anticipate to confirm applicability verification about the actual production by referring to this 3D printing concrete mix proportion study. In the future, this study can be utilized for blueprint of the 3D printing concrete mix proportion.

Hue-assisted automatic registration of color point clouds

  • Men, Hao;Pochiraju, Kishore
    • Journal of Computational Design and Engineering
    • /
    • 제1권4호
    • /
    • pp.223-232
    • /
    • 2014
  • This paper describes a variant of the extended Gaussian image based registration algorithm for point clouds with surface color information. The method correlates the distributions of surface normals for rotational alignment and grid occupancy for translational alignment with hue filters applied during the construction of surface normal histograms and occupancy grids. In this method, the size of the point cloud is reduced with a hue-based down sampling that is independent of the point sample density or local geometry. Experimental results show that use of the hue filters increases the registration speed and improves the registration accuracy. Coarse rigid transformations determined in this step enable fine alignment with dense, unfiltered point clouds or using Iterative Common Point (ICP) alignment techniques.

건축 기획 지원 시뮬레이션 시스템 개발에 관한 기초 연구 (A Basic Study on the Development of Simulation Systems for Supporting the Pre-design Phase of Construction Projects)

  • 민경민;함남혁;김주형;김재준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.176-181
    • /
    • 2007
  • The widespread of IT technology caused a remarkable change in many industries and the construction industry is also one of them being influenced in the form of CIC(Computer Integrated Construction) and BIM(Building Information Modeling). Construction projects have many participants from various disciplines involved throughout the entire process. Therefore the success of the project greatly depend on the efficiency of decision-making using the information generated from each process stage. Looking from this aspect, the greatest potential value lies in the planning and pre-design stage when considering the construction life cycle. In this paper, we propose a project on developing a 3D object oriented simulation system for supporting the pre design phase. We define the needs for such system through previous case studies and suggest a to be process model. Finally we anticipate the effects that the project will eventually contribute to the construction industry.

  • PDF

하천시설 유지운영을 위한 손상정보 관리방안 연구 (Study on Damage Information Management Plan for Maintenance and Operation of River Facilities)

  • 주재하;남정용;김태형
    • 한국전산구조공학회논문집
    • /
    • 제34권1호
    • /
    • pp.9-18
    • /
    • 2021
  • 최근 건설시장에 4차 산업혁명기술의 급속한 확산과 도입, 적용이 트랜드로 부각되고 있다. BIM 기술은 4차 산업혁명 기술의 근간을 이루는 다차원 정보체계이다. 이러한 정보기반체계를 활용한 하천분야도 유지관리를 위한 현행화 방안 등 적극적인 연구검토가 되고 있다. 최근 하천 전문가들의 하천분야 BIM도입 효과에 필요성을 반영하여 적극적인 연구와 현행화 작업을 해야 된다. 그리고 첨단기술을 반영한 시설물 유지관리 정보체계를 활성화하고 관리계획 수립 및 운영을 위해서는 다양한 정보체계를 구축하기 위한 도구 및 지원소프트웨어의 개발이 반드시 필요할 것으로 전망된다. 하천시설의 유지운영을 위한 연구로 기본적으로 기존 도면자료를 이용하여 3차원 정보모델을 구축하고 이를 활용한 손상을 점검하고 정보화하며 보수보강을 위한 자료로 활용토록 하는 것이다. 이는 기존 도면방식에 없는 정보체계를 하천시설물을 3D 모델링과 함께 유지관리정보를 속성으로 구축하는 방법을 연구하여 유지운영을 위한 점검, 손상 관리를 보다 효과적이고 활용성이 높은 관리방안을 제시하고자 하였다.

선형중심 객체 관리를 위한 확장된 IFC 기반 철도 궤도부 정보모델링 방안 (The Information Modeling Method based on Extended IFC for Alignment-based Objects of Railway Track)

  • 권태호;박상일;서경완;이상호
    • 한국전산구조공학회논문집
    • /
    • 제31권6호
    • /
    • pp.339-346
    • /
    • 2018
  • 건축물을 중심으로 개발된 데이터 스키마인 Industry Foundation Class(IFC)를 토목구조물에 적용하기 위하여 IFC 요소를 확장하는 노력이 진행되고 있지만, BIM소프트웨어에서 확장 IFC 기반의 정보모델을 생성하는 방법이 충분하지 않아 어려움이 따른다. 본 연구에서는 정보관리가 가능한 확장 IFC 기반의 철도 궤도부 정보모델을 생성하기 위하여 독립적인 선형중심의 철도 궤도부 요소모델을 생성하고, 생성된 모델을 기반으로 확장 IFC 기반의 모델을 생성하는 방법론을 제시하였다. 이를 위하여 첫째, 철도 궤도부 요소를 연속적 구조물과 비연속적 구조물로 분류하였다. 연속적 구조물은 선형 기반 소프트웨어에서 생성하였고 이산화된 선형정보 연계를 통해 비연속 구조물을 독립적인 객체로 생성하고 이들을 통합하여 철도 궤도부 정보모델을 생성하였다. 둘째, 철도 궤도부의 정보관리를 위한 분류체계 및 확장 IFC 스키마를 제시하였다. 마지막으로 속성정보와 User-interface를 활용하여 객체의 의미정보를 식별하여 확장 IFC 요소와 매핑하였다. 제시한 방법론을 통하여 오송 철도종합시험선로를 대상으로 정보관리가 가능한 확장 IFC 기반의 정보모델을 생성됨을 확인하고 실용성을 검증하였다.

플랜트 배관지지대의 설계 프로그램 개발에 대한 연구 (A Study on Program Development for Pipe Hanger & Support Design in Plant)

  • 강신현;이왕도;허선철
    • 한국산업융합학회 논문집
    • /
    • 제27권5호
    • /
    • pp.1129-1136
    • /
    • 2024
  • This study aims to present a method for reducing human error, time spent on design, and waste of design manpower when designing plant pipe hanger & support using sketches based on piping and steel structure drawings in plant. The method involves organizing the pipe hanger & support design process based on codes and standards and developing a program to facilitate this. The design of whole plant systems, including pipe hangers & supports, is conducted within 3D plant CAD software that applies BIM (Building Information Modeling). All attribute information of the pipe hanger & support is digitized as a digital asset, and the design is executed as an add-in module. This module is then used for BOM(generating Bill of Materials) and installation drawings, which are essential for the fabrication and on-site installation of pipe hangers & supports.