• Title/Summary/Keyword: BI-RADS

Search Result 36, Processing Time 0.024 seconds

Diagnostic Yield of Primary Circulating Tumor Cells in Women Suspected of Breast Cancer: the BEST (Breast Early Screening Test) Study

  • Murray, Nigel P;Miranda, Roxana;Ruiz, Amparo;Droguett, Elsa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1929-1934
    • /
    • 2015
  • Purpose: To determine the diagnostic yield of primary circulating tumor cells in women with suspicion of breast cancer, detected as a result of an abnormal mammography. Materials and Methods: Consecutive women presenting for breast biopsy as a result of a mammogram BiRADs of 3 or more, had an 8ml blood sample taken for primary circulating tumor cell (CTC) detection. Mononuclear cells were obtained using differential gel centrifugation and CTCs identified using standard immunocytochemistry using anti-mammoglobin. A test was determined to be positive if 1 CTC was detected. Results: A total of 144 women with a mean age of $54.7{\pm}15.6$ years participated, 78/144 (53.0%) had breast cancer on biopsy, 65/140 (46.3%) benign pathologies and 1(0.7%) non-Hogkins lymphoma. Increasing BiRADs scores were associated with increased cancer detection (p=0.004, RR 1.00, 4.24, 8.50). CTC mammoglobin positive had a sensitivity of 81.1% and specificity of 90.9%, with positive and negative predictive values of 90.9% and 81.1% respectively. Mammoglobin positive CTCs detected 87% of invasive cancers, while poorly differentiated cancers were negative for mammoglobin. Only 50% of in situ cancers and none of the intraductal cancers had CTCs detected. Menopausal status did not affect the diagnostic yield of the CTC test, which was higher in women with BiRADS 4 mammograms. There was a significant trend (p<0.0001 Chi squared for trends) in CTC detection frequency from intraductal, in situ and invasive (OR 1.00, 8.00, 472.00). Conclusions: The use of primary CTC detection in women suspected of breast cancer has potential uses, especially with invasive cancer, but it failed to detect intra-ductal cancer and 50% of in situ cancer. There was no difference in the diagnostic yield between pre and post menopausal women. To confirm its use in reducing biopsies in women with BIRADs 4a mammagrams and in the detection of interval invasive breast cancer, larger studies are needed.

An Intelligent Agent System using Multi-View Information Fusion (다각도 정보융합 방법을 이용한 지능형 에이전트 시스템)

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, we design an intelligent agent system with the data mining module and information fusion module as the core components of the system and investigate the possibility for the medical expert system. In the data mining module, fuzzy neural network, OFUN-NET analyzes multi-view data and produces fuzzy cluster knowledge base. In the information fusion module and application module, they serve the diagnosis result with possibility degree and useful information for diagnosis, such as uncertainty decision status or detection of asymmetry. We also present the experiment results on the BI-RADS-based feature data set selected form DDSM benchmark database. They show higher classification accuracy than conventional methods and the feasibility of the system as a computer aided diagnosis system.

Scoring System to Predict Malignancy for MRI-Detected Lesions in Breast Cancer Patients: Diagnostic Performance and Effect on Second-Look Ultrasonography (유방암 환자의 MRI에서 발견된 병변의 악성 예측을 위한 점수체계: 진단적 능력과 이차 초음파 결정에 미치는 영향)

  • Young Geol Kwon;Ah Young Park
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.2
    • /
    • pp.379-394
    • /
    • 2020
  • Purpose To design a scoring system to predict malignancy of additional MRI-detected lesions in breast cancer patients. Materials and Methods Eighty-six lesions (64 benign and 22 malignant) detected on preoperative MRI of 68 breast cancer patients were retrospectively included. The clinico-radiologic features were correlated with the histopathologic results using the Student's t-test, Fisher's exact test, and logistic regression analysis. The scoring system was designed based on the significant predictive features of malignancy, and its diagnostic performance was compared with that of the Breast Imaging-Reporting and Data System (BI-RADS) category. Results Lesion size ≥ 8 mm (p < 0.001), location in the same quadrant as the primary cancer (p = 0.005), delayed plateau kinetics (p = 0.010), T2 isointense (p = 0.034) and hypointense (p = 0.024) signals, and irregular mass shape (p = 0.028) were associated with malignancy. In comparison with the BI-RADS category, the scoring system based on these features with suspicious non-mass internal enhancement increased the diagnostic performance (area under the receiver operating characteristic curve: 0.918 vs. 0.727) and detected three false-negative cases. With this scoring system, 22 second-look ultrasound examinations (22/66, 33.3%) could have been avoided. Conclusion The scoring system based on the lesion size, location relative to the primary cancer, delayed kinetic features, T2 signal intensity, mass shape, and non-mass internal enhancement can provide a more accurate approach to evaluate MRI-detected lesions in breast cancer patients.

Clinical Utility of MicroPure US Imaging for Breast Microcalcifications (유방 미세 석회에 대한 MicroPure 초음파)

  • Heerin Lee;Sung Hun Kim;Bong joo Kang;Jeong Min Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.4
    • /
    • pp.876-886
    • /
    • 2022
  • Purpose To evaluate the performance of MicroPure US imaging to detect and characterize microcalcifications. Materials and Methods A total of 171 lesions with suspicious microcalcifications seen on mammography and B-mode US were included and simultaneously evaluated using MicroPure US imaging. The size of microcalcifications was divided into small (punctate, amorphous, fine pleomorphic, and fine linear) and large (coarse heterogeneous), and the extent was divided into narrow (grouped) and wide (others). MicroPure US imaging visibility was divided into four types based on the number of microcalcifications on the two images: B > M (more on B-mode), B = M (similar), B < M (more on MicroPure), and negative. Triple pairwise comparison was used to evaluate the imaging features according to the MicroPure US imaging visibility. Results Among the 171 lesions examined, 157 lesions (91.8%) were detected by MicroPure US imaging. The proportion of Breast Imaging Reporting and Data System (BI-RADS) category 4A was significantly higher in the MicroPure positive group, and that of category 4B was significantly higher in the MicroPure negative group (p = 0.035). The other imaging features did not differ. Among the positive MicroPure subgroups, all features showed no significant difference. Conclusion MicroPure US imaging demonstrated 91.8% positivity in detecting microcalcifications on B-mode US. MicroPure US imaging visibility correlated with the BI-RADS category of microcalcifications.

Lack of Association between CYP1A1 M2 and M4 Polymorphisms and Breast Carcinoma in Jordanian Women: a Case-Control Study

  • Amrani, Iman;Bulatova, Nailya;Awidi, Abdalla;Yousef, Al-Motassem;Melhem, Jamal Masad;Al-Masri, Mahmoud;Tahoun, Laila Abu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.387-393
    • /
    • 2016
  • Background: CYP1A1 is a candidate gene for low-penetrance breast cancer susceptibility, as it plays an important role in the metabolism of carcinogens and estrogens. Purpose: The objective of this study was to assess the association between M2 (A2455G, Ile462Val) and M4 (C2453A, Thr461Asn) polymorphisms in CYP1A1 and breast cancer risk among Jordanian women and in subgroups stratified by menopausal status and smoking history. Materials and Methods: Blood samples were collected from 112 breast cancer female patients and 115 age-matched controls who underwent breast cancer screening with imaging and showed negative results (BI-RADS I or BI-RADS II). Genotyping was performed using the PCR-RFLP technique. Results: No statistically significant overall association was found between breast cancer risk and CYP1A1 M2 genotypes (p= 0.55; OR = 0.77; 95% CI= 0.32 - 1.83) nor with the M4 polymorphism (p= 0.95; OR= 0.95; 95% CI= 0.51 - 1.88). Analysis of subgroups defined by menopausal status or smoking history also revealed no association with these polymorphisms. Furthermore, the four identified haplotypes (AC; AA; GC and GA) were equally distributed among cases and controls, and haplotype analysis showed a strong linkage disequilibrium of both studied loci in either cases or controls (D'=1). Conclusions: Based on the study results, CYP1A1 M2 and M4 polymorphisms do not seem to play a major role in breast cancer risk among Jordanian females.

US-guided 14G Core Needle Biopsy: Comparison Between Underestimated and Correctly Diagnosed Breast Cancers

  • Kim, Hana;Youk, Ji Hyun;Kim, Jeong-Ah;Gweon, Hye Mi;Jung, Woo-Hee;Son, Eun Ju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3179-3183
    • /
    • 2014
  • Background: The purpose of study was to evaluate radiologic or clinical features of breast cancer undergoing ultrasound (US)-guided 14G core needle biopsy (CNB) and analyze the differences between underestimated and accurately diagnosed groups. Materials and Methods: Of 1,898 cases of US-guided 14G CNB in our institute, 233 cases were proven to be cancer by surgical pathology. The pathologic results from CNB were invasive ductal carcinoma (IDC) (n=157), ductal carcinoma in situ (DCIS) (n=40), high-risk lesions in 22 cases, and benign in 14 cases. Among high-risk lesions, 7 cases of atypical ductal hyperplasia (ADH) were reported as cancer and 11 cases of DCIS were proven IDC in surgical pathology. Some 29 DCIS cases and 157 cases of IDC were correctly diagnosed with CNB. The clinical and imaging features between underestimated and accurately diagnosed breast cancers were compared. Results: Of 233 cancer cases, underestimation occurred in 18 lesions (7.7%). Among underestimated cancers, CNB proven ADH (n=2) and DCIS (n=11) were diagnosed as IDC and CNB proven ADH (n=5) were diagnosed at DCIS finally. Among the 186 accurately diagnosed group, the CNB results were IDC (n=157) and DCIS (n=29). Comparison of underestimated and accurately diagnosed groups for BI-RADS category, margin of mass on mammography and US and orientation of lesion on US revealed statistically significant differences. Conclusions: Underestimation of US-guided 14G CNB occurred in 7.7% of breast cancers. Between underestimated and correctly diagnosed groups, BI-RADS category, margin of the mass on mammography and margin and orientation of the lesions on US were different.

Ultrasonographic Features of Triple-Negative Breast Cancer: a Comparison with Other Breast Cancer Subtypes

  • Yang, Qi;Liu, Hong-Yan;Liu, Dan;Song, Yan-Qiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3229-3232
    • /
    • 2015
  • Background: Triple-negative breast cancer (TNBC) is known to be associated with aggressive biologic features and a poor clinical outcome. Therefore, early detection of TNBC without missed diagnosis is a requirement to improve prognosis. Preoperative ultrasound features of TNBC may potentially assist in early diagnosis as characteristics of disease. Purpose: To retrospectively evaluate the sonographic features of TNBC compared to ER (+) cancers which include HER(-) and HER2 (+), and HER2 (+) cancers which are ER (-). Materials and Methods: From June 2012 through June 2014, sonographic features of 321 surgically confirmed ER (+) cancers (n=214), HER2 (+) cancers (n=66), and TNBC (n=41) were retrospectively reviewed by two ultrasound specialists in consensus. The preoperative ultrasound and clinicopathological features were compared between the three subtypes. In addition, all cases were analyzed using morphologic criteria of the ACR BI-RADS lexicon. Results: Ultrasonographically, TNBC presented as microlobulated nodules without microcalcification (p=0.034). A lower incidence of ductal carcinoma in situ (p<0.001), invasive tumor size that is>2 cm (p=0.011) and BI-RADS category 4 (p<0.001) were significantly associated with TNBC. With regard to morphologic features of 41 TNBC cases, ultrasonographically were most likely to be masses with irregular (70.7%) microlobulated shape (48.8%), be circumscribed (17.1%) or have indistinct margins (17.1%) and parallel orientation (68.9%). Especially TNBC microlobulated mass margins were more more frequent than with ER (+) (2.0%) and HER2 (+) (4.8%) cancers. Conclusions: TNBC have specific characteristic in sonograms. Ultrasonography may be useful to avoid missed diagnosis and false-negative cases of TNBC.

Elastography for Breast Cancer Diagnosis: a Useful Tool for Small and BI-RADS 4 Lesions

  • Liu, Xue-Jing;Zhu, Ying;Liu, Pei-Fang;Xu, Yi-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10739-10743
    • /
    • 2015
  • The present study aimed at evaluating and comparing the diagnostic performance of B-mode ultrasound (US), elastography score (ES), and strain ratio (SR) for the differentiation of breast lesions. This retrospective study enrolled 431 lesions from 417 in-hospital patients. All patients were examined with both conventional ultrasound and elastography. Two experienced radiologists reviewed ultrasound and elasticity images. The histopathologic result obtained from ultrasound-guided core biopsy or operation excisions were used as the reference standard. Pathologic examination revealed 276 malignant lesions (64%) and 155 benign lesions (36%). A cut-off point of 4.15 (area under the curve, 0.891) allowed significant differentiation of malignant and benign lesions. ROC (receiver-operating characteristic) curves showed a higher value for combination of B-mode ultrasound and elastography for the diagnosis of breast lesions. Conventional ultrasound combined elastography showed high sensitivity, specificity, and accuracy for group II lesions (10mm${\leq}20mm$). Elastography combined with conventional ultrasound show high specificity and accuracy for differentiation of benign and malignant breast lesions. Elastography is particularly important for the diagnosis of BI-RADS 4 and small breast lesions.

Combination of Quantitative Parameters of Shear Wave Elastography and Superb Microvascular Imaging to Evaluate Breast Masses

  • Eun Ji Lee;Yun-Woo Chang
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1045-1054
    • /
    • 2020
  • Objective: This study aimed to evaluate the diagnostic value of combining the quantitative parameters of shear wave elastography (SWE) and superb microvascular imaging (SMI) to breast ultrasound (US) to differentiate between benign and malignant breast masses. Materials and Methods: A total of 200 pathologically confirmed breast lesions in 192 patients were retrospectively reviewed using breast US with B-mode imaging, SWE, and SMI. Breast masses were assessed based on the breast imaging reporting and data system (BI-RADS) and quantitative parameters using the maximum elasticity (Emax) and ratio (Eratio) in SWE and the vascular index in SMI (SMIVI). The area under the receiver operating characteristic curve (AUC) value, sensitivity, specificity, accuracy, negative predictive value, and positive predictive value of B-mode alone versus the combination of B-mode US with SWE or SMI of both parameters in differentiating between benign and malignant breast masses was compared, respectively. Hypothetical performances of selective downgrading of BI-RADS category 4a (set 1) and both upgrading of category 3 and downgrading of category 4a (set 2) were calculated. Results: Emax with a cutoff value of 86.45 kPa had the highest AUC value compared to Eratio of 3.57 or SMIVI of 3.35%. In set 1, the combination of B-mode with Emax or SMIVI had a significantly higher AUC value (0.829 and 0.778, respectively) than B-mode alone (0.719) (p < 0.001 and p = 0.047, respectively). B-mode US with the addition of Emax, Eratio, and SMIVI had the best diagnostic performance of AUC value (0.849). The accuracy and specificity increased significantly from 68.0% to 84.0% (p < 0.001) and from 46.1% to 79.1% (p < 0.001), respectively, and the sensitivity decreased from 97.6% to 90.6% without statistical loss (p = 0.199). Conclusion: Combining all quantitative values of SWE and SMI with B-mode US improved the diagnostic performance in differentiating between benign and malignant breast lesions.

Background Parenchymal Enhancement on Breast MRI in Breast Cancer Patients : Impact on Biopsy Rate and Cancer Yield (유방암 환자에서 시행한 유방 자기공명영상에서 배경 실질 조영 증강이 조직검사율과 악성률에 미치는 영향)

  • Kim, Tae Yun;Kim, Sung Hun;Baik, Jee Eun;Kim, Yun Joo;Kang, Bong Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.224-231
    • /
    • 2013
  • Purpose : To evaluate the potential effects of background parenchymal enhancement of MR imaging in diagnosed breast cancer patients on the rate of additional biopsy and resultant cancer yield. Materials and Methods: 322 patients who were diagnosed with breast cancer and had undergone breast MR imaging were included in this study. Two radiologists reviewed the MRI for degree of background parenchymal enhancement and additional suspicious lesions described as BI-RADS category 4 or 5 on radiologic reports. Biopsy was done for these lesions, pathology reports were reviewed to calculate the cancer yield. Results: Background parenchymal enhancement of MR imaging in a total of 322 patients were classified as minimal degree 47.5%, mild degree 28.9%, moderate degree 12.4% and marked degree 11.2%. Among these 332 patients, MR imaging of 70 patients showed additional suspicious malignant lesions described as BI-RADS category 4 or 5, and consequently, 66 patients underwent biopsy. Biopsy rates in those with minimal or mild background parenchymal enhancement and those with moderate and marked background parenchymal enhancement were 19.9% and 22.3% (p-value 0.77) respectively. Cancer yields in those with minimal or mild background parenchymal enhancement and those with moderate and marked background parenchymal enhancement were 6.5% and 5.2% (p value 0.88) respectively. Both these results did not show stastically significant difference between the two groups. Conclusion: The degree of background parenchymal enhancement in MR imaging of breast cancer patients did not significantly impact additional biopsy rates or cancer yields.