• Title/Summary/Keyword: BFCA

Search Result 5, Processing Time 0.021 seconds

Preparation of an Amino Acid Based DTPA as a BFCA for Radioimmunotherapy

  • Choi, Kang-hyuk;Hong, Young-Don;Pyun, Mi-Sun;Choi, Sun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1194-1198
    • /
    • 2006
  • For the purpose of developing more effective chelating agents, we have synthesized a diethylene triamine pentaacetic acid(DTPA) analogue by using an amino acid. S-(N-Boc-aminophenyl)-Cys(t-Bu4-DTPA) methylester was prepared in 6 steps with total yield of 47.9%. For the sake of introducing a biomolecule to the DTPA derivative, a selective hydrolysis was performed with 3 M HCl/Ethylacetate = 1 : 3 ($25{^{\circ}C}$, 30 min, vigorous stirring). $^{166}Ho$-Cys-DTPA and $^{166}Ho$-Biotin-Cys-DTPA were prepared by mixing $^{166}Ho$ with DTPA derivatives at room temp in a HCl solution (pH = 5) and the radiochemical stabilities (> 99%) were maintained for over 6 hrs in vitro.

Synthesis and Evaluation of a Ligand Targeting the Somatostatin Receptor for Drug Delivery to Tumor Cell (암세포 내로의 약물 전달 증진 목적의 신규 소마토스타틴 수용체 타겟리간드 합성 및 평가)

  • Choi, SunJu;Hong, YoungDon;Lee, SoYoung;Jung, SungHee
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.193-198
    • /
    • 2015
  • Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, $^{177}Lu$-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological half-life of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.

Preparation of $^{99m}Tc-HYNIC-PEG-liposomes$ for Imaging of the Focal Sites of Infection (농양 진단을 위한 $^{99m}Tc-HYNIC-PEG-liposomes$의 제조)

  • Hong, Jun-Pyo;Awh, Ok-Doo;Kim, Hyun-Suk;Lee, Eun-Sook;Lee, Tae-Sup;Choi, Tae-Hyun;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.333-343
    • /
    • 2002
  • Purpose: A new linker, hydrazino nicotinamide (HYNIC), was recently introduced for labelling of liposome with $^{99m}Tc$. In this study we synthesized HYNIC derivatized PEG (polyethylene glycol)-liposomes radiolabeled with $^{99m}Tc$. Materials and Methods: In order to synthesize HYNIC-DSPE (distearoyl phosphatidyl ethanolamine) which is a crucial component for $^{99m}Tc$ chelation, first of all succinimidyl 6-BOC-hydrazinopyridine-3-carboxylic acid was synthesized from 6-chloronicotinic acid by three sequential reactions. A DSPE derivative of succinimidyl 6-BOC-hydrazinopyridine-3-carboxylic acid was transformed into HYNIC-DSPE by HCI/dioxane. HYNIC-PEG-liposomes were prepared by hydration of the dried lipid mixture of EPC (egg phosphatidyl choline): PEG-DSPE : HYNIC-DSPE:cholesterol (1.85:0.15:0.07:1, molar ratio). The HYNIC-PEG-liposomes were labeled with $^{99m}Tc$ in the presence of $SnCl_2{\cdot}2H_2O$ (a reducing agent) and tricine (a coligand). To investigate the level of in vivo transchelation of $^{99m}Tc$ in the liposomes, the $^{99m}Tc$-HYNiC-PES-liposomes were incubated with a molar excess of DTPA, cysteine or glutathione solutions at $37^{\circ}C$ for 1 hour. The radiolabeled liposomes were also incubated in the presence of human serum at $37^{\circ}C$ for 24 hours. Results: 6-BOC-hydrazinopyridine-3-carboxylic acid was synthesized with 77.3% overall yield. The HYNIC concentration in the PEG-coated liposome dispersion was 1.08 mM. In condition of considering the measured liposomal size of 106 nm, the phospholipid concentration of $77.5\;{\mu}mol/m{\ell}$ and the liposomal particle number of $5.2{\times}10^{14}$ liposomes/ml, it is corresponded to approximate 1,250 nicotinyl hydrazine group per liposome in HYNIC-PEG-liposome. The removal of free $^{99m}Tc$ was not necessary because the labeling efficiency were above 99%. The radiolabeled liposomes maintained 98%, 96% and 99%, respectively, of radioactivity after incubation with transchelators. The radiolabeled liposomes possessed above 90% of the radioactivity in serum. Conclusion: These results suggest that the HYNIC can be synthesized easily and applied in labelling of PEG-liposomes with $^{99m}Tc$.