• Title/Summary/Keyword: BER Performance Improvement

Search Result 238, Processing Time 0.022 seconds

Performance Analysis of STBC System Combined with Convolution Code fot Improvement of Transmission Reliability (전송신뢰성의 향상을 위해 STBC에 컨볼루션 코드를 연계한 시스템의 성능분석)

  • Shin, Hyun-Jun;Kang, Chul-Gyu;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1068-1074
    • /
    • 2011
  • In this paper, the proposed scheme is STBC(space-time block codes) system combined with convolution code which is the most popular channel coding to ensure the reliability of data transmission for a high data rate wireless communication. The STBC is one of MIMO(multi-input multi-output) techniques. In addition, this scheme uses a modified viterbi algorithm in order to get a high system gain when data is transmitted. Because we combine STBC and convolution code, the proposed scheme has a little high quantity of computation but it can get a maximal diversity gain of STBC and a high coding gain of convolution code at the same time. Unlike existing viterbi docoding algorithm using Hamming distance in order to calculate branch matrix, the modified viterbi algorithm uses Euclidean distance value between received symbol and reference symbol. Simulation results show that the modified viterbi algorithm improved gain 7.5 dB on STBC 2Tx-2Rx at $BER=10^{-2}$. Therefore the proposed scheme using STBC combined with convolution code can improve the transmission reliability and transmission efficiency.

Improvement of Received Optical Power Sensitivity in Asymmetric 2.5Gbps/1.2Gbps Passive Optical Network with Inverse Return to Zero(RZ) coded Downstream and NRZ upstream re-modulation (역 RZ 부호로 코딩된 하향신호의 재변조를 이용한 비대칭 2.5Gbps/622Mbps 수동 광가입자 망에서의 수신 감도의 개선)

  • Park, Sang-Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.65-72
    • /
    • 2010
  • We propose the asymmetric 2.5Gbps/622Mbps PON(Passive Optical Network) in order to reduce the bandwith of filter at receiver with inverse RZ(Return to Zero) code coded downstream and NRZ(Non Return to Zero) upstream re-modulation. I theoretically analyze BER(Bit Error Rate) performance and the power sensitivity with the optimal threshold level by performing simulation with MATLAB according to the types of downstream data. The results have shown that the optimal threshold level at the optical receiver could be saturated at 0.33 as the optical received power increase more than -26dBm to keep $10^{-12}$ of BER to a minimum. Also the power sensitivity is more improved by about 3dB by fixing the threshold level at 0.33 than the conventional receiver. The proposed system can be a useful technology for optical access networks with asymmetric upstream and downstream data rates because the optical receiver can be used without controlling threshold levels and that does not require a light source in optical network unit (ONU) and its control circuits in the optical line termination (OLT).

Performance of Passive UHF RFID System in Impulsive Noise Channel Based on Statistical Modeling (통계적 모델링 기반의 임펄스 잡음 채널에서 수동형 UHF RFID 시스템의 성능)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2023
  • RFID(Radio Frequency Identification) systems are attracting attention as a key component of Internet of Things technology due to the cost and energy efficiency of application services. In order to use RFID technology in the IoT application service field, it is necessary to be able to store and manage various information for a long period of time as well as simple recognition between the reader and tag of the RFID system. And in order to read and write information to tags, a performance improvement technology that is strong and reliable in poor wireless channels is needed. In particular, in the UHF(Ultra High Frequency) RFID system, since multiple tags communicate passively in a crowded environment, it is essential to improve the recognition rate and transmission speed of individual tags. In this paper, Middleton's Class A impulsive noise model was selected to analyze the performance of the RFID system in an impulsive noise environment, and FM0 encoding and Miller encoding were applied to the tag to analyze the error rate performance of the RFID system. As a result of analyzing the performance of the RFID system in Middleton's Class A impulsive noise channel, it was found that the larger the Gaussian noise to impulsive noise power ratio and the impulsive noise index, the more similar the characteristics to the Gaussian noise channel.

Simultaneous Single Band Duplex System for the Spectrum Efficiency Improvement (스펙트럼 효율 향상을 위한 동일대역 동시 통신 (Simultaneous Single Band Duplex) 시스템)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.810-816
    • /
    • 2013
  • In this paper, we propose a SSD (simultaneous single-band duplex) system using Digital Cancellation. Also, we propose a method for Digital Cancellation when RF Cancellation is effectively performed. The proposed system has estimation frame for effective self-interference channel estimation in time-domain. The proposed system calculates signal power for selection of optimal coefficient after digital cancellation. Then, the proposed system selects coefficient of minimum signal power. Further, the proposed system uses LDPC code to minimize the effects of remaining self-interference signal. The proposed system shows BER performance of at 20dB by cancelling self-interference and iterating LDPC code. That is, the proposed system shows that the SSD communication is possible in static self-interference channel.

A Novel Channel Compensation and Equalization scheme for an OFDM Based Modem (OFDM 전송시스템의 새로운 채널 보상 및 등화 기법)

  • Seo, Jung-Hyun;Lee, Hyun;Cheong, Cha-Keon;Cho, Kyoung-Rok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.1009-1018
    • /
    • 2003
  • A new fading channel estimation technique is proposed for an OFDM based modem In the ITS system. The algorithm is based on the transfer function extraction of the channel using the pilot signals and compensated the channel preceding the equalization. The newly derived algorithm is division-free arithmetic operations allows the faster circuit operation and the smaller circuit size. Proposed techniques compensate firstly the distortion which is generated at fading channels and secondly eliminate inter-symbol interference. All algorithms are suitability estimated and improved for a system implementation using digital circuits. As the results, the circuit size is reduced by 20% of the conventional design and achieved about 10% performance improvement at low SNR under 10dB in case of ITS system adapted 16-QAM mode.

Adaptive Correlation Receiver for Frequency Hopping Multi-band Ultra-Wideband Communications (주파수 도약 멀티 밴드 초 광대역 통신을 위한 적응적 상관 수신기 방식)

  • Lee, Ye-Hoon;Choi, Myeong-Soo;Lee, Seong-Ro;Lee, Jin-Seok;Jung, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.401-407
    • /
    • 2009
  • The multi-band (MB) ultra-wideband (UWB) communication system divides its available frequency spectrum in 3.1 to 10.6GHz into 16 sub-bands, which leads to inherent disparities between carrier frequencies of each sub-band. For instance, the highest carrier frequency is 2.65 times higher than the lowest one. Since the propagation loss is proportional to the square of the transmission frequency, the propagation loss on the sub-band having the highest carrier frequency is approximately 7 times larger than that on the sub-band having the lowest carrier frequency, which results in disparities between received signal powers on each sub-band. In this paper, we propose a novel correlation scheme for frequency hopping (FH) MB UWB communications, where the correlation time is adaptively adjusted relative to the sub-band, which reduces the disparity between the received signal energies on each sub-band. Such compensation for lower received powers on sub-bands having higher carrier frequency leads to an improvement on the total average bit error rate (BER) of the entire FH MB UWB communication system. We analyze the performance of the proposed correlation scheme in Nakagami fading channels, and it is shown that the performance gain provided by the proposed correlator is more significant as the Nakagami fading index n increases (i.e., better channel conditions).

Adaptive OFDM System Employing a New SNR Estimation Method (새로운 SNR 추정방법을 이용한 적응 OFDM 시스템)

  • Kim Myung-Ik;Ahn Sang-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.59-67
    • /
    • 2006
  • OFDM (Orthogonal frequency Division Multiplexing) systems convert serial data stream to N parallel data streams and modulate them to N orthogonal subcarriers. Thus spectrum utilization efficiency of the OFDM systems are high and high-speed data transmission is possible. However, with the OFDM systems using the same modulation method at all subcarriers, the error probability is dominated by the subcarriers which experience deep fades. Therefore, in order to enhance the performance of the system adaptive modulation is required, with which the modulation methods of the subcarriers are determined according to the estimated SNRs. The IEEE 802.11a system selects various transmission speed between 6 and 54 Mbps according to the modulation mode. There are three typical methods for SNR estimation: Direct estimation method uses the frequency domain symbols to estimate SNR directly by minimizing MSE (Mean Square Error), EVM method utilizes the distance between the demodulated constellation points and received complex values, and the method utilizing the Viterbi algorithm uses the cumulative minimum distance in decoding process to estimate the SNR indirectly. Through comparison analyses of three methods we propose a new SNR estimation method, which employs both the EVM method and the Viterbi algorithm. Finally, we perform extensive computer simulations to confirm the performance improvement of the proposed adaptive OFDM systems on the basis of IEEE 802.11a.

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.