• Title/Summary/Keyword: BEM method

Search Result 408, Processing Time 0.025 seconds

Topology Optimization for Radiation and Scattering of Sound from a Thin-body (박판 구조물의 소음 방사 및 산란에 대한 위상 최적 설계)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1032-1037
    • /
    • 2003
  • Although the holes on the shell case are very important fer the acoustic performance, it is difficult to solve the problem because the case includes thin bodies. Hence, in the past, only the method of trial and error, which depends on the engineer's intuition and experience, was available fur the design of holes. Many researchers have tried to solve the thin-body acoustic problems, since the conventional boundary element method (BEM ) using the Helmholtz integral equation fails to yield a reliable solution fer the numerical modelling of radiation anti scattering of sound from thin bodies. In the area of the analysis of thin-body acoustic problem, three approaches are generally used; the multi-domain BEM, the indirect variational BEM, and the normal derivative integral equation And there has been just a f9w study reported on the design optimization for the acoustic radiation problems by using only the conventional BEM. For the thin-body acoustics, however, no further study in the optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used fur the optimization. The analytical approaches for the design of holes are proposed by using a topology optimization technique and a genetic algorithm. The proposed approaches are implemented and validated using numerical examples.

  • PDF

Evaluation of the Performance of the Noise Barrier Using the BEM (경계요소법에 의한 방음벽의 성능 평가)

  • Hwang, Cheal-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.94-100
    • /
    • 2008
  • Noise barriers are being used more often to solve problems of noise pollution from traffic noise. Several types of noise barriers are being installed to increase the cost-effectiveness of noise barrier installation. In this study, the insertion loss is analyzed to evaluate the effectiveness of the noise barrier by using the BEM. In order to check the validity of the BEM, the BEM and Lam's theoretical analysis are compared with measurement, which is performed in the anechoic chamber for the 1/10 scale-down model, and good agreements are obtained. By using the two dimensional boundary element method, the insertion loss is calculated and analyzed for several typical noise barriers such as the vertical barrier, the barrier with an oblique edge on top, the T-shaped barrier and the barrier with interference device on top. With these analyses, it is possible to design more cost-effective noise barriers appropriate for a particular area.

A Framework Development for BIM-based Object-Oriented Physical Modeling for Building Thermal Simulation (객체지향 물리적 모델링 기법을 활용한 BIM기반 통합 건물에너지 성능분석 모델 구축 및 활용을 위한 프레임워크 개발 - 건물 열부하 시뮬레이션 중심으로 -)

  • Jeong, WoonSeong
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.95-105
    • /
    • 2015
  • Purpose: This paper presents a framework development for BIM (Building Information Modeling)-based OOPM (Object-Oriented Physical Modeling) for Building Thermal Simulation. The framework facilitates decision-making in the design process by integrating two object-oriented modeling approaches (BIM and OOPM) and efficiently providing object-based thermal simulation results into the BIM environment. Method: The framework consists of a system interface between BIM and OOPM-based building energy modeling (BEM) and the visualization of simulation results for building designers. The interface enables a BIM models to be translated into OOPM-based BEM automatically and the thermal simulation from the created BEM model immediately. The visualization module enables the simulation results to be presented in BIM for building designers to comprehend the relationships between design decisions and the building performances. For the framework implementation, we utilized the Modelica Buildings Library developed by the Lawrence Berkeley National Laboratory as a thermal simulation solver. We also conducted an experiment to validate the framework simulation results and demonstrate our framework. Result: This paper demonstrates a new methodology to integrate BIM and OOPM-based BEM for building thermal simulation, which enables an automatic translation BIM into OOPM-based BEM with high efficiency and accuracy.

A Study on The Prediction of Workpiece Shape of The Electrochemical Machining by Boundary Element Method (경계요소법에 의한 전해가공물의 형상예측에 관한 연구)

  • 강대철;양재봉;김헌영;전병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.443-447
    • /
    • 2003
  • The BEM (Boundary Element Method) is a computational technique for the approximate solution of problems in continuum mechanics. In the BEM both volume and surface integrals transformed into boundary integral equations. So, we applied the ECM (Electrochemical Machining) process to boundary problem, because our focus is only deformed shape. The ECM process is modeled as a two-dimensional problem assuming constant properties of electrolyte, and an incremental formulation is used with automatic mesh regeneration. As a result the final shape is roughly agreed with experimental shape. But, it has an error of exact shape, because a chemically factor is not considered

  • PDF

Stress Analysis of Brazed Interface in Dissimilar Materials by BEM (이종접합재 접합계면의 응력해석)

  • 오환섭;김시현;김성재;양인수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.171-176
    • /
    • 2003
  • In this study, stress analysis using Boundary Element Method (BEM) was carried to investigate stress distribution in the brazing joint between a Hardmetal and a HSS. The two models were proposed to analyze the stress singularity in the interfaces of the brazing joint. The material type, thickness of the filler metal and the length of the vertical brazing adhesive are considered in the BEM analysis. As results, the peak point of the stress is founded to be in the lower interface of the brazed joint. It should be noted that the maximum stress of the peak point is being affected by the thickness and length of the brazing joint.

Hydrodynamic analysis of the surface-piercing propeller in unsteady open water condition using boundary element method

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.22-37
    • /
    • 2016
  • This article investigates numerical modeling of surface piercing propeller (SPP) in unsteady open water condition using boundary element method. The home code based on BEM has been developed for the prediction of propeller performance, unsteady ventilation pattern and cross flow effect on partially submerged propellers. To achieve accurate results and correct behavior extraction of the ventilation zone, finely mesh has generated around the propeller and especially in the situation intersection of propeller with the free surface. Hydrodynamic coefficients and ventilation pattern on key blade of SPP are calculated in the different advance coefficients. The values obtained from this numerical simulation are plotted and the results are compared with experiments data and ventilation observations. The predicted ventilated open water performances of the SPP as well as ventilation pattern are in good agreement with experimental data. Finally, the results of the BEM code/experiment comparisons are discussed.

The Stress Analysis of Dissimilar Materials in Brazed Interface by BEM (이종재 브레이징 접합계면의 응력해석)

  • 오환섭;김시현;김성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.769-772
    • /
    • 1997
  • In this study, By employing two dimensional(2-D) Boundary Element Method(BEM) stress analysis was carried to investigate stress distributions on the brazing joint of a Hardmetal and a HSS. Two model was proposed to analyze stress singularity in brazed interface. The stress results from the BEM were considered influence of the kind of materials , thickness of filled metal and length of vertical brazing adhesive. From those obtained results , the peak point of stress was founded in the lower part of two interface was made by brazing. As the thickness and length changed, the maximum stress tended to change in the peak point.

  • PDF

Boundary Element Method for the Homogenization of the Baffle/Reflector

  • Cho, Nam-Zin;Hongwu Cheng;Park, Chang-Je
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.27-32
    • /
    • 1996
  • In this study, the boundary element method (BEM) is used to treat the homogenization of the baffle and reflector. First, the multigroup diffusion equations (MDE) within the core are solved using BEM as a source problem under the assumption that the core material is uniformly distributed. Then, the solution to MDE for the water reflector which should be extended infinite can be attained from a boundary source problem also via BEM. Finally, these two solutions are coupled through albedos of the slab-shaped baffle so that one could obtain heterogeneous interface currents and fluxes between the core and the baffle/reflector resulting in the location-dependent equivalent parameters for the baffle/reflector.

  • PDF

Use of Rigid Scattering Body in the use of NAH based on the inverse BEM (역경계요소법에 근거한 근접 음향 홀로그래피에서 강체 산란체의 이용)

  • 김성일;정지훈;이정권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.486-489
    • /
    • 2004
  • The NAH based on the inverse BEM is used to reconstruct the source field, which is advantageous in dealing with the irregular source. In the implementation of this technique, a large number of pressure measurements is required because an over-determined pressure data set is required. These conditions accordingly cause the increase of measurement time and associated effort along with the error due to mal-positioning. The purpose of this study is to reduce such inconveniences: Instead of increasing the number of field pressure data, the number of transfer paths between the source and the receiver is increased by placing rigid scattering body in-between the source and receiver. For validating the usefulness and effectiveness of the method, the numerical analyses of interior problem are demonstrated. As a result, it is thought that the proposed method enables the measurement at smaller number of sensor positions and the monitoring of surface vibration with less experimental effects than before.

  • PDF

The Analysis of Stress Behavior in welded interface and interface crack of High Frequency Pressure welding of Dissimilar materials for Fin-Tube (Fin-Tube 이종재의 고주파 압접 접합계면 및 계면균열 응력해석)

  • 김도형;이동진;오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.380-385
    • /
    • 2000
  • In this study, geometric shape and crack in welded interface of the air cooled heat exchanger Fin-Tube of Dissimilar Meterials was analysed. The object of study is to understand the behavior of Stress Intensity Factor for fin length, flash thickness, flash length, symmetric and asymmetric cracks of comming from the manufacturing process. Stress Intensity Factor was analysed by BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF