• Title/Summary/Keyword: BEM method

Search Result 408, Processing Time 0.019 seconds

Mathematical Modeling on the Corrosion Behavior of the Steel Casing and Pipe in Cathodic Protection System (음극방식 시스템에서의 압입관과 배관의 부식거동에 관한 수학적 모델링)

  • Kim Y.S.;Li S.Y.;Park K.W.;Jeon K.S.;Kho Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.40-46
    • /
    • 1998
  • Mathematical modeling on the corrosion of the steel casing and main pipe due to the protection current resulting from a cathodic protection system was carried out using boundary element method. The model is consisted of Laplace's equation with non-linear boundary conditions(Tafel equations) and the iterative technique to determine the miexed potential of the steel casing. The model is applied to the normal steel casing section as well as abnormal one with defects such as metal touch and insulation defects. From the modeling procedure, we can calculate the potential distributions and current density distributions of the system. The theoretical results of the qualitatiive corrosion aspect along the steel casing and main pipe agree well with the experimental results within the experimental conditions studied.

  • PDF

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

Wave Response Analysis for Pontoon-type Pier: Very Large Floating Structure (폰툰형 초대형 부유체식 부두의 파랑응답해석)

  • Lee, Sang-Do;Park, Sung-Hyeon;Kong, Gil-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • In this study, we proposed a pier of pontoon-type, "Very Large Floating Structure" (VLFS), with the length of 500m, breadth of 200 m and height of 2 m in Yeosu domestic port. Since this structure ought to endure wave loads for long periods at sea, it is essential to analyze the wave response characteristics. Direct-method is used to analyze the fluid-structure problem and the coupled motion of equation is used to obtain response results. The structural part is calculated by using finite element method (FEM) and the fluid part is analyzed by using boundary element method (BEM). Dynamic responses caused by the elastic deformation and rigid motion of structure are analyzed by numerical calculation. To investigate response characteristics of the pier in regular waves, several factors such as the wavelength, water depth, wave direction and flexural rigidity of structure are considered. As a result, wave response of pier changed at the point of $L/{\lambda}$ 1.5 and represented the torsional phenomenon according to the various incident waves. And the responses showed increasing tendency as the water depths increase at the incident point in case of $L/{\lambda}=8.0$ and peak point of vertical displacement amplitude moved from side to side as the flexural rigidity of structure changes.

Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion (플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석)

  • Kim, Youngjin;Yu, Dong Ok;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.368-375
    • /
    • 2018
  • In the present study, aerodynamic load analysis for a floating off-shore wind turbine was conducted to examine the effect of periodic platform motion in the direction of 6-DOF on rotor aerodynamic performance. Blade-element momentum method(BEM) was used for a numerical simulation, the unsteady airload effects due to the flow separation and the shed wake were considered by adopting a dynamic stall model based on the indicial response method. Rotor induced downwash was estimated using the momentum theory, coupled with empirical corrections for the turbulent wake states. The periodic platform motions including the translational motion in the heave, sway and surge directions and the rotational motion in the roll, pitch and yaw directions were considered, and each platform motion was applied as a sinusoidal function. For the numerical simulation, NREL 5MW reference wind turbine was used as the target wind turbine. The results showed that among the translation modes, the surge motion has the largest influence on changing the rotor airloads, while the effect of pitch motion is predominant for the rotations.

Acoustic Performance Evaluation of Noise Barriers Installed Adjacent to Rails and Suggestion of Approximation Formula for the Prediction of Insertion Loss (근접 방음벽의 음향성능평가 및 삽입손실 예측을 위한 근사식의 제안)

  • Yoon, Je Won;Jang, Kang Seok;Cho, Yong Thung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.629-637
    • /
    • 2016
  • In this paper, an investigation was conducted to evaluate the acoustic performance of low height noise barriers installed adjacent to rails; an easy-to-use approximation formula was suggested for the evaluation of insertion loss (IL), instead of using the boundary element method. At first, the acoustic performance of the low height noise barriers was measured in an anechoic chamber using a scaled down model; the overall IL according to the source location was analyzed with the equivalent IL contour line. Using the measurement results obtained from the scaled down model, an approximation formula was suggested for the IL of low height noise barriers having various shapes. Also, the prediction program was validated through a comparison between the actual measurement results in the anechoic chamber and the prediction results. Finally, using the prediction program, an approximation formula for IL was suggested for the low height noise absorption barriers. Considering the frequency characteristics of the noise sources of the train, the absorptive low height noise barriers have a 'ㄱ' type shape, a height of 1.0m, and a length of 0.5m when they are installed on the structure gauge for the train.

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Development of Method for Possibility Assessment on Organic Resources for Using Raw Material of Compost (유기성자원의 퇴비원료로 활용 가능성 평가방법 개발)

  • Lim, Dong-Kyu;Lee, Seung-Hwan;Seong, Ki-Seog;So, Kyu-Ho;Shin, Jung-Du;Lee, Jeong-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.77-84
    • /
    • 2006
  • This study was conducted to find a system for screening organic resources with 16 species, 62 samples which were selected to randomizing point from city, province and industrial areas in the whole country. Content of organic matters were $65.3%{\sim}98.0%$ in all samples so that they were largely over than 60%, raw material regulation of compost. Concentrations of total nitrogen and total phosphorus were $0.7{\sim}4.8%\;and\;0.8{\sim}5.0$, they could look for effect of the nitrogen and phosphorus supply as a raw material of compost. In case of 8 elements concentrations of heavy metal, they were too high to use as raw materials of compost which were over to regulation limit in Cu, Cr, Ni, and As from fiber industry, Ni from food company and leather industry, and the others are adapt to limit levels. HEM contents fro the highest to $113mg\;kg^{-1}$ from liber industry and PAHs content were the highest to $3,462ug\;kg^{-1}$ from paper-mill manufacture. Distribution of PAHs concentiations were naphthalene>phenanthrene>pyrene>fluoroanthene>acenaphthene. $Microtox{(R)}\;EC_{50}$ values for bioassay were pharmaceutical company>paper-mill manufacture>industrial area sewage sludge>fiber industry>urban sewage sludge>metropolitan sewage sludge. HEM between Zn, Cu, and Ni was significant at the 99% and between Cd was significant at the 95%, Microtox between Hg and BEM significant at the 95%.