• Title/Summary/Keyword: BEARING BRANCH

Search Result 79, Processing Time 0.025 seconds

Random imperfection effect on reliability of space structures with different supports

  • Roudsari, Mehrzad Tahamouli;Gordini, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.461-472
    • /
    • 2015
  • The existence of initial imperfections in manufacturing or assembly of double-layer space structures having hundreds or thousands of members is inevitable. Many of the imperfections, such as the initial curvature of the members and residual stresses in members, are all random in nature. In this paper, the probabilistic effect of initial curvature imperfections in the load bearing capacity of double-layer grid space structures with different types of supports have been investigated. First, for the initial curvature imperfection of each member, a random number is generated from a gamma distribution. Then, by employing the same probabilistic model, the imperfections are randomly distributed amongst the members of the structure. Afterwards, the collapse behavior and the ultimate bearing capacity of the structure are determined by using nonlinear push down analysis and this procedure is frequently repeated. Ultimately, based on the maximum values of bearing capacity acquired from the analysis of different samples, structure's reliability is obtained by using Monte Carlo simulation method. The results show the sensitivity of the collapse behavior of double-layer grid space structures to the random distribution of initial imperfections and supports type.

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Variation of Fruit and Seed Morphology of 6 Natural Populations of Sorbus commixta Hedl. in Korea (마가목 6개 천연집단의 열매와 종자 형질 변이)

  • Song, Jeong-Ho;Jang, Kyung-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was conducted to investigate the variation of fruit and seed morphology among populations and among individuals within population of Sorbus commixta Hedl. distributed in Korea. Fruits collected from 42 trees in six natural populations and their six fruit and four seed characteristics were analyzed. In all characteristics, there were significant differences among populations and among individuals within populations. Especially, number of fruits per fruit-bearing branch and number of seeds per fruit showed higher values among populations in total variance component. Coefficients of variation in the number of fruits per fruit-bearing branch and seed weight are relatively high (42.0~75.3%) compared to other traits (11.9~32.1%). As a result of simple correlation analysis, the number of fruits per fruit-bearing branch showed a significant positive correlation with latitude but showed a negative correlation with longitude. According to cluster analysis, geographically close populations showed the tendency of clustering into the same group. Three principal components (PC) were deduced from principal component analysis, which explain the 87% of total variance of fruit and seed characteristics. The highest contribution was seed length and seed weight in PC1, fruit width and seed index in PC2 and fruit length and number of fruits per fruit-bearing branch in PC3.

Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix[4]arene Bearing Di-[N-(X)sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation

  • Mokhtari, Bahram;Pourabdollah, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1509-1516
    • /
    • 2012
  • Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclusion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixarene in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of $p-tert-calix$[4]arene bearing different sulfonamide moieties were synthesized and their inclusion-extraction parameters were optimized including the calixarene scaffold $\mathbf{3}$ (4 wt %) as the carrier/demulsifier, the commercial kerosene as diluent in membrane, sulphonic acid (0.2 M) and ammonium carbonate (0.4 M) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 rpm), and initial solute concentration (100 mg/L). The selectivity of membrane over more than ten interfering cations was examined and the results reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98-99%.

Numerical study on the performance of corrugated steel shear walls

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Emadi, A.;Bayat, M.
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.405-420
    • /
    • 2014
  • This paper examines the nonlinear behaviour of corrugated steel plate shear walls under lateral pushover load. One of the innovations in these types of walls which have used in recent years is the use of the corrugated steel shear walls rather un-stiffness plates. In the last decades many experimental studies have been done on the on the corrugated steel shear walls. A finite element analysis that includes both material and geometric nonlinearities is employed for the investigation. A comparison is made between the behaviour of steel shear walls with sinusoidal corrugated plate and trapezoidal corrugated plate. The effects of parameters such as the thickness of the corrugated plate, the corrugation depth in the corrugated plates and the corrugation length of the infill of the corrugated plates, are investigated. The results of this study have demonstrated that in the wall with constant dimensions, the trapezoidal plates have higher energy dissipation, ductility and ultimate bearing than sinusoidal waves, while decreasing the steel material consumption.

Effect of connection stiffness on the earthquake-induced progressive collapse

  • Ali, Seyedkazemi;Mohammad Motamedi, Hour
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • Global or partial damage to a structure due to the failure of gravity or lateral load-bearing elements is called progressive collapse. In the present study, the alternate load path (ALP) method introduced by GSA and UFC 4-023-03 guidelines is used to evaluate the progressive collapse in special steel moment-resisting frame (SMRF) buildings. It was assumed that the progressive collapse is due to the earthquake force and its effects after the removal of the elements still remain on the structures. Therefore, nonlinear dynamic time history analysis employing 7 earthquake records is used to investigate this phenomenon. Internal and external column removal scenarios are investigated and the stiffness of the connections is changed from semi-rigid to rigid. The results of the analysis performed in the OpenSees program show that the loss of the bearing capacity of an exterior column due to a seismic event and the occurrence of progressive collapse can increase the inter-story drift of the structure with semi-rigid connections by more than 50% and make the structure unable to satisfy the life safety performance level. Furthermore, connection stiffness severely affects the redistribution of forces and moments in the adjacent elements of the removed column.

Experimental and numerical study of the behavior of fiber reinforced concrete beams with nano-graphene oxide and strengthening CFRP sheets

  • Mohammad Reza Halvaeyfar;Ehsanollah Zeighami;S. Mohammad Mirhosseini;Ali Hassani Joshaghani
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In many fiber concrete beams with Carbon Fiber Reinforced Polymer (CFRP), debonding occurs between the carbon sheets and the concrete due to the low strength of the bonding resin. A total of 42 fiber concrete beams with a cross-section of 10×10 cm with a span length of 50 cm are fabricated and retrofitted with CFRP and subjected to a 4-point bending test. Graphene Oxide (GO) at 1, 2, and 3 wt% of the resin is used to improve the mechanical properties of the bonding resins, and the effect of length, width, and the number of layers of CFRP and resin material are investigated. The crack pattern, failure mode, and stress-strain curve are analyzed and compared in each case. The results showed that adding GO to polyamine resin could improve the bonding between the resin and the fiber concrete beam. Furthermore, the optimum amount of nanomaterials is equal to 2% by the weight of the resin. Using 2% nanomaterials showed that by increasing the length, width, and number of layers, the bearing and stiffness of fiber concrete beams increased significantly.

Fruit Characteristics of New Cultivar 'Autumn sense' of Hardy Kiwi (Actinidia arguta) by Stem Pruning (전정에 의한 신품종 다래 '오텀센스'의 과실 특성)

  • Kim, Chul-Woo;Kim, Mahn-Jo;Kim, Jae-Hee;Park, Youngki
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.73-77
    • /
    • 2016
  • In this study, we examined the changes of fruit number and fruit weight according to the length of bearing branch of Actinidia arguta and identified the correlation the length of bearing branch and fruit characteristics. The fruit weight and the fruit number of A. arguta bearing branch which length are below 15 cm and over 30 cm were 11.7 g, 4.3 and 12.3 g, 13.8, respectively. From the results, the bearing brach which length was below 15 cm must be removed in winter season pruning. The pruning experiment was conducted to examine the effects on fruit quality and yield of A. arguta. Total fruit yield of heavy-pruning was $14.3{\pm}1.5kg/tree$. The production of fruits over 15 g wight was $8.2{\pm}0.9kg/tree$, that of fruits between 10 g to 15 g was $4.0{\pm}0.7kg/tree$, and that of fruit below 10 g was $2.1{\pm}0.3kg/tree$, respectively. Average fruit yield of nonpruning was $26.7{\pm}2.1kg/tree$, fruit yield over 15 g, between 10 g and 15 g, and below 10 g were $2.5{\pm}0.5kg/tree$, $19.2{\pm}1.4kg/tree$, and $5.0{\pm}0.6kg/tree$, respectively. Distribution of high quality fruit (over 15 g) showed that non-pruning was almost 15~16 g but pruning was evenly distributed between 15 g and 20 g. According to the survey, The high quality fruit (over 15 g) would not be harvested if the winter pruning is not applied in the A. arguta cultivation.

Axial behavior of RC column strengthened with SM-CFST

  • Jiang, Haibo;Li, Jiahang;Cheng, Quan;Xiao, Jie;Chen, Zhenkan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.773-784
    • /
    • 2022
  • This paper aims to investigate the axial compressive behavior of reinforced concrete (RC) columns strengthened with self-compacting and micro-expanding (SM) concrete-filled steel tubes (SM-CFSTs). Nine specimens were tested in total under the local axial compression. The test parameters included steel tube thickness, filling concrete strength, filling concrete type and initial axial preloading. The test results demonstrated that the initial stiffness, ultimate bearing capacity and ductility of original RC columns were improved after being strengthened by SM-CFSTs. The ultimate bearing capacity of the SM-CFST strengthened RC columns was significantly enhanced with the increase of steel tube thickness. The initial stiffness and ultimate bearing capacity of the SM-CFST strengthened RC columns were slightly enhanced with the increase of filling concrete strength. However, the effect of filling concrete type and initial axial preloading of the SM-CFST strengthened RC columns were negligible. Three equations for predicting the ultimate bearing capacity of the SM-CFST strengthened RC columns were compared, and the modified equation based on Chinese code (GB 50936-2014) was more precise.

Numerical analysis of an innovative expanding pile under static and dynamic loading

  • Abdullah Cheraghi;Amir K. Ghorbani-Tanha
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.453-462
    • /
    • 2023
  • Designing pile foundations subjected to the uplift forces such as buildings, oil platforms, and anchors is becoming increasingly concerned. In this paper, the conceptual design of a new type of driven piles called expanding pile is presented and assessed. Some grooves have been created in the shaft of the novel pile, and some moveable arms have been designed at the pile tip. At first, static analyses using the finite element method were performed to evaluate the effectiveness of the innovative pile on the axial bearing capacity. Then its effect on seismic behavior of moment frame is considered. Results show that the expanding arms were provided an ideal anchorage system because of the soil's noticeable locking-up effect increasing uplift bearing capacity. For example at the end of the static tensile loading procedure, displacement decrement up to 55 percent is observed. In addition, comparing the uplift bearing capacity of the usual and new pile with different lengths in sand and clay layers shows noticeable effect and sharp increase up to about two times especially in longer piles. Besides, a sensible reduction in the seismic response and the stresses in the beam-column connection between 23-36 percent are achieved that ensures better seismic behavior of the structures.