• Title/Summary/Keyword: BDI (Baltic Dry Index)

Search Result 24, Processing Time 0.021 seconds

Forecasting the BDI during the Period of 2012 (2012 BDI의 예측)

  • Mo, Soo-Won
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.4
    • /
    • pp.1-11
    • /
    • 2011
  • In much the same way as the US Lehman crisis of 2008-2009 severely impacted the European economy through financial market dislocation, a European banking crisis would materially impact the US economy through a generalized increase in global risk aversion. A deepening of the European crisis could very well derail the US economic recovery and have a harmful impact on the Asian economies. This kind of vicious circle could be a bad news to the shipping companies. The purpose of the study is to predict the Baltic Dry Index representing the shipping business during the period of 2012 using the ARIMA-type models. This include the ARIMA and Intervention-ARIMA models. This article introduces the four ARIMA models and six Intervention-ARIMA models. The monthly data cover the period January 2000 through October 2011. The out-of-sample forecasting performance is also calculated. Forecasting performance is measured by three summary statistics: root mean squared percent error, mean absolute percent error and mean percent error. The root mean squared percent errors, however, are somewhat higher than normally expected. This reveals that it is very difficult to predict the BDI The ARIMA-type models show that the shipping market will be bearish in 2012. These pessimistic ex-ante forecasts are supported by the Hodrick-Prescott filtering technique.

Estimation of BDI Volatility: Leverage GARCH Models (BDI의 변동성 추정: 레버리지 GARCH 모형을 중심으로)

  • Mo, Soo-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.3
    • /
    • pp.1-14
    • /
    • 2014
  • This paper aims at measuring how new information is incorporated into volatility estimates. Various GARCH models are compared and estimated with daily BDI(Baltic Dry Index) data. While most researchers agree that volatility is predictable, they differ on how this volatility predictability should be modelled. This study, hence, introduces the asymmetric or leverage volatility models, in which good news and bad news have different predictability for future. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. From the Ljung-Box test statistic for twelfth-order serial correlation for the level we do not find any significant serial correlation in the unpredictable BDI. The coefficients of skewness and kurtosis both indicate that the unpredictable BDI has a distribution which is skewed to the left and significantly flat tailed. Furthermore, the Ljung-Box test statistic for twelfth-order serial correlations in the squares strongly suggests the presence of time-varying volatility. The sign bias test, the negative size bias test, and the positive size bias test strongly indicate that large positive(negative) BDI shocks cause more volatility than small ones. This paper, also, shows that three leverage models have problems in capturing the correct impact of news on volatility and that negative shocks do not cause higher volatility than positive shocks. Specifically, the GARCH model successfully reveals the shape of the news impact curve and is a useful approach to modeling conditional heteroscedasticity of daily BDI.

Analysis of the Influence of Shipping Policies on the Expansion of Korea's Merchant Fleet Using System Dynamics (시스템 다이내믹스를 이용한 해운정책이 우리나라 외항선대 증가에 미친 영향에 관한 연구)

  • Kim, Sung-Bum;Jeon, Jun-Woo;Yeo, Gi-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.2
    • /
    • pp.23-40
    • /
    • 2015
  • This study measures how Korean shipping policies influence the expansion of the country's merchant fleet using system dynamics. It uses various indexes as factors influencing the gross tonnage of the Korean merchant fleet, such as the Baltic Dry Index, Howe Robinson Container Index, China Containerized Freight Index, and Worldscale Index, as well as the US dollar-Korean won exchange rate, world merchant fleet statistics, and the debt ratio of Korean shipping companies. After establishing the simulation model, the mean absolute percentage error is found to be less than 10%, confirming the accuracy of the model. Therefore, a sensitivity analysis is conducted to measure the influence of the selected shipping policies, including the gross tonnage of vessels registered under the Korean second registry system, loans of publicly owned financial institutions to shipping companies, ship investment fund, and the number of shipping companies participating in the tonnage tax scheme. The sensitivity analysis reveals that the influence of vessel tonnage and loans to shipping companies is the most significant, while that of the number of companies participating in the tonnage tax scheme is minimal.

Analysis of Causality of the Increase in the Port Congestion due to the COVID-19 Pandemic and BDI(Baltic Dry Index) (COVID-19 팬데믹으로 인한 체선율 증가와 부정기선 운임지수의 인과성 분석)

  • Lee, Choong-Ho;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.161-173
    • /
    • 2021
  • The shipping industry plummeted and was depressed due to the global economic crisis caused by the bankruptcy of Lehman Brothers in the US in 2008. In 2020, the shipping market also suffered from a collapse in the unstable global economic situation due to the COVID-19 pandemic, but unexpectedly, it changed to an upward trend from the end of 2020, and in 2021, it exceeded the market of the boom period of 2008. According to the Clarksons report published in May 2021, the decrease in cargo volume due to the COVID-19 pandemic in 2020 has returned to the pre-corona level by the end of 2020, and the tramper bulk carrier capacity of 103~104% of the Panamax has been in the ports due to congestion. Earnings across the bulker segments have risen to ten-year highs in recent months. In this study, as factors affecting BDI, the capacity and congestion ratio of Cape and Panamax ships on the supply side, iron ore and coal seaborne tonnge on the demand side and Granger causality test, IRF(Impulse Response Function) and FEVD(Forecast Error Variance Decomposition) were performed using VAR model to analyze the impact on BDI by congestion caused by strengthen quarantine at the port due to the COVID-19 pandemic and the loading and discharging operation delay due to the infection of the stevedore, etc and to predict the shipping market after the pandemic. As a result of the Granger causality test of variables and BDI using time series data from January 2016 to July 2021, causality was found in the Fleet and Congestion variables, and as a result of the Impulse Response Function, Congestion variable was found to have significant at both upper and lower limit of the confidence interval. As a result of the Forecast Error Variance Decomposition, Congestion variable showed an explanatory power upto 25% for the change in BDI. If the congestion in ports decreases after With Corona, it is expected that there is down-risk in the shipping market. The COVID-19 pandemic occurred not from economic factors but from an ecological factor by the pandemic is different from the past economic crisis. It is necessary to analyze from a different point of view than the past economic crisis. This study has meaningful to analyze the causality and explanatory power of Congestion factor by pandemic.