• Title/Summary/Keyword: BCZY

Search Result 3, Processing Time 0.015 seconds

BaCeO3-BaZrO3 Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs) (BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발)

  • An, Hyegsoon;Shin, Dongwook;Choi, Sung Min;Lee, Jong-Ho;Son, Ji-Won;Kim, Byung-Kook;Je, Hae June;Lee, Hae-Weon;Yoon, Kyung Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.271-277
    • /
    • 2014
  • To overcome the limitations of the solid oxide fuel cells (SOFCs) due to the high temperature operation, there has been increasing interest in proton conducting fuel cells (PCFCs) for reduction of the operating temperature to the intermediate temperature range. In present work, the perovskite $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-\delta}$ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via solid state reaction (SSR) and adopted as an electrolyte materials for PCFCs. Powder characteristics were examined using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were obtained in all compositions, and chemical stability was improved with increasing Zr content. Anode-supported cell with $Ni-BaCe_{0.55}Z_{0.3}Y_{0.15}O_{3-\delta}$ (BCZY3) anode, BCZY3 electrolyte and BCZY3-$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) composite cathode was fabricated and electrochemically characterized. Open-circuit voltage (OCV) was 1.05 V, and peak power density of 370 ($mW/cm^2$) was achieved at $650^{\circ}C$.

Effect of Nickel Addition on Sintering Behavior and Electrical Conductivity of BaCe0.35Zr0.5Y0.15O3-δ

  • An, Hyegsoon;Shin, Dongwook;Ji, Ho-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • The effect of different Ni-containing additives on the sintering behavior and electric conductivity of the proton conducting electrolyte $BaCe_{0.35}Zr_{0.5}Y_{0.15}O_{3-{\delta}}$ (BCZY5) was investigated. Ni-doped, NiO-added, and $BaY_2NiO_5$(BYN)-added (all 4 mol%) BCZY5 samples were prepared by the solid state synthesis method and sintered at $1400^{\circ}C$ for 6 h. Among the three samples, the onset of densification was observed at the lowest temperature for NiO-added BCZY5, which is attributed to the formation of an intermediate phase at a low melting temperature. The BYN-added sample, where no consumption of the constitutional elements of the electrolyte was expected during sintering, exhibited the highest electrical conductivity whereas the doped sample had the lowest conductivity. The electrical conductivities at $500^{\circ}C$ under humid argon atmosphere were measured to be 2.0, 4.8, and $6.2mS{\cdot}cm^{-1}$ for Ni-doped and NiO- and BYN-added samples, respectively.

Isolation and Characterization of Plant Growth Promoting Bacteria Pseudomonas sp. SH-26 from Peat Soil (이탄 토양으로부터 식물생육촉진세균 Pseudomonas sp. SH-26의 분리 및 특성)

  • Ho-Young Shin;Da-Son Kim;Chang-Ho Lee;Dong-Soek Lee;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.199-207
    • /
    • 2024
  • We conducted to investigate both plant growth-promoting and plant disease-controlling activities of bacterial strains isolated from soil. Among the 48 isolated strains, SH-23, SH-26, SH-29, and SH-33 were identified as excellent strains for the production of β-glucosidase, cellulase, amylase, and protease. These 4 strains exhibited antifungal activity against plant pathogenic fungi (Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Colletotrichum acutatum). Strain SH-26, which exhibited excellent organic matter decomposition and antifungal activity against plant pathogenic fungi, was selected as the final superior strain. Upon determining the 16S rRNA gene sequence of the selected SH-26 strain, it exhibited 100% similarity with Pseudomonas knackmussii HG322950 B13T, Pseudomonas citronellolis BCZY01000096 NBRC 103043T, and Pseudomonas delhiensis jgi.1118306 RLD-1T. Furthermore, it was confirmed that the Pseudomonas sp. SH-26 exhibited siderophore production, nitrogen fixation ability, and the production of Indole-3-acetic acid.