• Title/Summary/Keyword: BCNU 106

Search Result 28, Processing Time 0.023 seconds

Production of Indigoid Pigments by Persolvent Fermentation with Pseudomonas putida BCNU 106 (Pseudomonas sp. BCNU 106의 persolvent fermentation에 의한 인디고이드계 색소 생산)

  • Choi, Hye Jung;Kwon, Gi-Seok;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.81-85
    • /
    • 2014
  • Pseudomonas sp. BCNU 106 isolated from industrial wastewater was able to produce indigo from indole by utilizing various organic solvents. BCNU 106 produced indigo effectively when grown in the presence of a large volume of p-xylene, propylbenzene, and mesitylene and a high level of indole. The present study demonstrated that the maximal yield was achieved with 20% (v/w) p-xylene and 4 g/l indole. Under these conditions, the indigo yield and the transformation efficiency of indole were 315.5 mg/l and 97%, respectively. The results suggest that Pseudomonas sp. BCNU 106 might be a potential candidate for industrially important indigo production.

Toluene Tolerance in Solvent Tolerant Pseudomonas sp. Strains By Antioxidant Defense Systems (항산화 방어 시스템에 의한 유기용매 내성세균 Pseudomonas sp. 균주에서의 톨루엔 내성)

  • Joo, Woo Hong;Choi, Hye Jung;Kim, Da Som;Cho, Yong-Kweon;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1401-1407
    • /
    • 2019
  • To elucidate whether or not solvent-tolerant bacteria use anti-oxidative defense systems to defend themselves against toxic solvents, oxidative enzyme activity and total anti-oxidative capacity (T-AOC) were investigated in two tolerant strains of Pseudomonas sp. under toluene stress. The superoxide dismutase (SOD) activities of solvent tolerant BCNU 106 exhibited relatively increased levels at a toluene concentration of 100 mg/l, where those of solvent tolerant BCNU 171 increased at 200 mg/l. A greater than three-fold increase in catalase (CAT) levels was observed at concentrations of 200 and 300 mg/l in BCNU 106, and a two-fold increase was monitored at the same concentrations in BCNU 171. High glutathione S-transferase (GST) levels were also observed in the solvent tolerant bacteria. Higher levels of T-AOC was expressed in the solvent tolerant strains than in the ordinary non-tolerant KACC 10266. The highest plateau of SOD in BCNU 171 was observed at 1 hr of toluene exposure. CAT levels plateaued at 1 hr and 14 hr in BCNU 106 and reached the highest plateau at 3 hr in BCNU 171. The highest peak of T-AOC occurred at 9 hr in BCNU 106, and two high peaks occurred in BCNU 171, at 1 hr and at 9 hr of toluene exposure. The solvent-tolerant bacteria showed active antioxidant responses and could survive under harsh environments, including the presence of solvents, through means of antioxidant defense systems.

고농도 Indole 내성 Pseudomonas savastanoi BCNU 106에 의한 Indigo 및 Indirubin의 생산

  • Choe, Ri-Na;Cha, Mun-Jeong;Park, Jeong-Uk;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.470-473
    • /
    • 2000
  • Since the biosynthetic production of indigo and indirubin normally reflects a difficult process including the toxicity of indole to microorganisms, only several bacterial strains have been exploited to produce indigo and indirubin from indole or its derivatives. P. savastanoi BCNU 106, which was a gram negative bacterium, was isolated and tolerant to 10% (v/v) toluene. The indole tolerance level of P. savastanoi BCNU 106 was as high as 160 mg/ml when toluene or p-xylene was added to the medium to 20% by volume. P. savastanoi BCNU 106 grown in a two-phase culture system containing indole(100 mg/ml) and P-xylene (0.2 ml/ml) produced P-xylene-soluble pigments, blue indigo and purple indirubin. Of the conditious tried, the production of indigo and indirubin was found only when P. savastanoi BCNU 106 was grown in the two-phase system overlaid with the organic solvents with appropriate polarity. This study may illustrate that the isolated extremophile P. savastanoi could be used in the microbial conversion process of the industrial potentials.

  • PDF

Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106 (Pseudomonas sp. BCNU 106이 생산하는 유기용매 내성 리파아제의 특성)

  • Choi, Hye Jung;Hwang, Min Jung;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.603-607
    • /
    • 2016
  • A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (120.41 %), toluene (118.14%), chloroform (103.66%) and dodecane (102.94%) and showed excellent stability comparable with the commercial immobilized enzyme. In addition, the stability of BCNU 106 lipase retained above 110% of its enzyme activity in the presence of Cu2+, Hg2+, Zn2+ and Mn2+, whereas Fe2+ strongly inhibited its stability. The detergents including tween 80, triton X-100 and SDS were positive signals for lipase stability. Because of its stability in multiple organic solvents, cations and surfactants, the Pseudomonas sp. BCNU 106 lipase could be considered as a potential biocatalyst in the industrial chemical processes without using immobilization.

Biodegradation of trichloroacetic acid from organic solvent tolerant bacterium, Pseudomonas savastanoi BCNU 106

  • Kim, Jong-Su;Park, Hyeong-Cheol;Jo, Su-Dong;Lee, Seung-Han;Kim, Gi-Uk;Mun, Ja-Yeong;Jeong, Yeong-Gi;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.390-392
    • /
    • 2003
  • Organic solvent tolerant bacterium, Pseudomonas savastanoi BCNU 106 could utilize trichloroacetic acid, monochloroacetic acid, trichloroethylene, p-dichlorobenzene as a sole carbon source. But Pseudomonas savastanoi BCNU 106 didn't have tolerance about trichloroacetic acid, monochloroacetic acid, trichloroethylene, p-dichlorobenzene. Strain BCNU 106 could utilize to the extend of 30 mM trichloroacetic acid as a sole carbon source on mineral salt medium.

  • PDF

Benzene, toluene, ethylbenzene 그리고 세가지 xylene isomer를 분해하는 유기용매 내성세균 Pseudomonas savastanoi BCNU 106의 분리 및 분해 특성

  • Kim, Jong-Su;Park, Hyeong-Cheol;Jo, Su-Dong;Lee, Seung-Han;Bae, Yun-Wi;Mun, Ja-Yeong;Jeong, Yeong-Gi;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.382-385
    • /
    • 2003
  • Organic solvent tolerant bacterium, designated as strain BCNU 106 is a gram negative, rod-shaped aerobe and grows on benzene, toluene, ethylbenzene, and xylenes (BTEX) as a sole carbon source. According to 16S rDNA analysis and fatty acid analysis, strain BCNU 106 showed highest similarity to Pseudomonas syringae var. savastanoi (Pseudomonas savastanoi). Strain BCNU 106 was able to utilize toluene, ethylbenzene, both o-, m-, p-xylene , m-cresol and o-cresol. The degradation of o-, m-, p-xylene by strain BCNU 106 is particularly important, since o-xylene is a compound of considerable environmental interest, owing to its recalcitrance; and very few microorganism have been reported to utilize both o-, m-, p-xylene as a sole carbon source.

  • PDF

Biodegradation of BTEX (benzene, toluene, ethylbenzene, xylene isomers) from organic solvent tolerant bacterium, Pseudomonas savastanoi BCNU 106

  • Kim, Jong-Su;Park, Hyeong-Cheol;Jo, Su-Dong;Kim, Gi-Uk;Bae, Yun-Wi;Mun, Ja-Yeong;Jeong, Yeong-Gi;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.386-389
    • /
    • 2003
  • Organic solvent tolerance bacteria, Pseudomonas savastanoi BCNU 106 could utilize a high contentration of benzene, toluene, ethylbenzene, xylene isomers (BTEX) as a sole carbon source. It was founded that strain BCNU 106 transformed o-xylene to 2-methylbenzyl alcohol, 2-methylbenzoic acid through direct oxygenation of methyl residue on GC-MS analysis.

  • PDF

Solvent-tolerance and trehalose accumultion by expression of otsA and otsB homologs in the response to toluene of Pseudomonas sp. BCNU 106 isolated from waste water

  • Bae, Yun-Ui;Park, Hyeong-Cheol;Yoo, Ju-Soon;Kim, Ki-Wook;Cho, Soo-dong;Moon, Ja-Young;Jeong, Yong-Kee;Joo, Woo-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.801-806
    • /
    • 2003
  • Pseudomonas sp. BCNU 106 accumulated approximately 4.12 mM trehalose after cultivation of 12 hr probably by the arising action of trehalose-6-phosphate synthase/phosphatase. The cDNA clones of trehalose-6-phosphate synthase/ phosphatase were isolated from Pseudomonas sp. BCNU 106, and named as PsTPS and PsTPP(Pseudomonas sp. BCNU 106 trehalose-6-phosphate synthase/phosphatase). The two mRNA levels of trehalose-6-phosphate synthase/ phosphatase peaked at 12 hr after exposure to toluene, and thereafter were declined slightly These results support an important role of trehalose accumulation by expressions of PsTPS and PsTPP in toluene-tolerance of Pseudomonas sp. BCNU 106.

  • PDF

Bioconversion of Cholesterol by Organic Solvent Tolerant Pseudomonas savastanoi BCNU 106

  • Gang, Jeong-Han;Jeong, Mi-Yeon;Kim, Mi-Rim;Park, Jeong-Uk;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.474-477
    • /
    • 2000
  • An organic solvent-tolerant Pseudomonas savastanoi strain BCNU 106 was isolated.. This bacterium was gram negative rod, and showed oxidase positive, catalase positive, and decaboxylase positive reactions. The Pseudomonas strain oxidized cholesterol on the medium supplemented with an organic solvent. The strain BCNU 106 is able to grow in presence of organic solvents of which log $P_{ow}$ is between 1.5 to 7.0. The strain was well grown in a medium supplemented with a 10% volume of a organic solvent (toluene, p-xylene, cyclohexane, mesitlylene) containing $cholesterol(20mg/m{\ell)$. Major conversion compound were 7-dehydrocholesteryl dimethylphosphate, cholesta-4,7-dien-3-one, and cholesta-3,5-dieone.

  • PDF

Effect of Exogenous Trehalose on the Solvent Tolerance of Pseudomonas sp. BCNU 106 (유기용매 내성 Pseudomonas sp. BCNU 106 균주의 외인성 트레할로스의 영향)

  • Choi, Hye Jung;Lim, Bo Ra;Ha, Sang-Chul;Kwon, Gi-Seok;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.945-950
    • /
    • 2017
  • To some extent, the growth of solvent-tolerant Pseudomonas sp. BCNU 106 is limited by toxic solvents. Therefore, various strategies to overcome this limitation need to be investigated. One such strategy is to use exogenous trehalose. The highest intracellular trehalose content of 181.88 mM was measured at 12 hr. The extracellular trehalose content decreased rapidly within 12 to 16 hr in the presence of cyclohexane. Moreover, the number of Pseudomonas sp. BCNU 106 cells grown in Luria-Bertani (LB) broth supplemented with 0.1 M trehalose in the presence of 1%(v/v) cyclohexane, hexane, propylbenzene, and m-xylene increased 89.94-, 89.72-, 91.25-, and 118.9-fold, respectively, in comparison to the control level. High survival rates of 80% and 90% were observed in the presence of cyclohexane and hexane by the addition of 0.05 M trehalose for up to 4 hr, respectively. Exogenously-added trehalose was transported into the cells, and it conferred protection against cyclohexane, hexane, propylbenzene, and m-xylene. Adding exogenous trehalose to the growth medium improved the tolerance of Pseudomonas sp. BCNU 106; thus, it is a potential biocatalyst for biotransformation and biodegradation.