• Title/Summary/Keyword: BAX and BCL-2 expression

Search Result 657, Processing Time 0.028 seconds

Circ_UBE2D2 Attenuates the Progression of Septic Acute Kidney Injury in Rats by Targeting miR-370-3p/NR4A3 Axis

  • Huang, Yanghui;Zheng, Guangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.740-748
    • /
    • 2022
  • As circ_UBE2D2 has been confirmed to have targeted binding sites with multiple miRNAs involved in septic acute kidney injury (SAKI), efforts in this study are directed to unveiling the specific role and relevant mechanism of circ_UBE2D2 in SAKI. HK-2 cells were treated with lipopolysaccharide (LPS) to construct SAKI model in vitro. After sh-circ_UBE2D2 was transfected into cells, the transfection efficiency was detected by qRT-PCR, cell viability and apoptosis were determined by MTT assay and flow cytometry, and expressions of Bcl-2, Bax and Cleaved-caspase 3 were quantified by western blot. Target genes associated with circ_UBE2D2 were predicted using bioinformatics analysis. After the establishment of SAKI rat model, HE staining and TUNEL staining were exploited to observe the effect of circ_UBE2D2 on tissue damage and cell apoptosis. The expression of circ_UBE2D2 was overtly elevated in LPS-induced HK-2 cells. Sh-circ_UBE2D2 can offset the inhibition of cell viability and the promotion of cell apoptosis induced by LPS. Circ_UBE2D2 and miR-370-3p as well as miR-370-3p and NR4A3 have targeted binding sites. MiR-370-3p inhibitor reversed the promoting effect of circ_UB2D2 silencing on viability of LPS-treated cells, but shNR4A3 neutralized the above inhibitory effect of miR-370-3p inhibitor. MiR-370-3p inhibitor weakened the down-regulation of NR4A3, Bax and Cleaved caspase-3 and the up-regulation of Bcl-2 induced by circ_UB2D2 silencing, but these trends were reversed by shNR4A3. In addition, sh-circ_UBE2D2 could alleviate the damage of rat kidney tissue. Circ_UBE2D2 mitigates the progression of SAKI in rats by targeting miR-370-3p/NR4A3 axis.

Effect of Snake Venom Toxin on Inhibition of Colorectal Cancer HT29 Cells Growth via Death Receptors Mediated Apoptosis

  • Shim, Yoon Seop;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives : We investigated whether snake venom toxin(SVT) from Vipera lebetina turanica sensitizes HT29 human epithelial colorectal cancer cells to tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) induced apoptosis in cancer cells. Methods : Cell viability assay was used to assess the inhibitory effect of TRAIL on cell growth of HT29 human colorectal cancer cells. And 6-diamidino-2-phenylindole(DAPI), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay(TUNEL) staining assay were used to evaluate cell-apoptosis. Western blot analysis were conducted to observe apoptosis related proteins and death receptor. To assess whether the synergized inhibitory effect of SVT and TRAIL on reactive oxygen species(ROS) generation was reversed by strong anti-oxidative agent. Results : SVT with TRAIL inhibited HT29 cell growth different from TRAIL alone. Consistent with cell growth inhibition, the expression of TRAIL receptors; Expression of death receptor(DR)4 and DR5 was significantly increased and intrinsic pro-apoptotic cleaved caspase-3, -9 was subsequently increased together with increase of Bax/Bcl-2 ratio and extrinsic pro-apototic caspase-8 was also activated. In addition, the expression of anti-apoptotic survival proteins, a marker of TRAIL resistance(eg, cFLIP, survivin, X-linked inhibitor of apoptosis protein(XIAP) and Bcl-2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the ROS scavenger N-acetylcysteine abolished the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the intrinsic pro-apoptotic caspase-3 and-9. Conclusion : The collective results suggest that SVT facilitates TRAIL-induced apoptosis in $HT_{29}$ human epithelial colorectal cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 and consecutive induction of bilateral apoptosis via regulating apoptosis related proteins.

Neuroprotective effects of geneticin (G418) via apoptosis in perinatal hypoxic-ischemic brain injury (주산기 저산소성 허혈성 뇌손상에서 항고사를 통한 geneticin (G418)의 신경보호 효과)

  • Ju, Mi;Lee, Hyun Ju;Lee, Sun Ju;Seo, Eo Su;Park, Hye Jin;Lee, Kye Yang;Lee, Gyeong Hoon;Choi, Eun Jin;Kim, Jin Kyung;Lee, Jong Won;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.2
    • /
    • pp.170-180
    • /
    • 2008
  • Purpose : Some antibiotics were known to exert neuroprotective effects in the animal model of hypoxic-ischemic (H-I) brain injury, but the mechanism is still unclear. A recent study reported that geneticin (G418), an aminoglycoside antibiotic, increased survival of human breast cancer cells by suppressing apoptosis. We investigated the neuroprotective effects of systemically administrated geneticin via anti-apoptosis following the H-I brain injury Methods : Seven-day-old Sprague-Dawley rat pups were subjected to unilateral (left) common carotid artery occlusion followed by 2.5 hours of hypoxic exposure and the cortical cell culture of rat brain was done under a hypoxic incubator. Apoptosis was measured in the injured hemispheres 7 days after H-I insult and in the injured cells from hypoxic chamber using morphologic analysis by Terminal dUTP Nick-end Labeling(TUNEL) assay and immunohistochemistry for caspase-3, and cytologic analysis by western blot and real time PCR for bax, bcl-2, and caspase-3. Results : The gross appearance and hematoxylin and eosin stain revealed increased brain volume in the geneticin-treated animal model of perinatal H-I brain injury. The TUNEL assay revealed decreased apoptotic cells after administration of geneticin in the cell culture model of anoxia. Immunohistochemistry showed decreased caspase-3 expression in geneticin-treated cortical cell culture. Western blot and real-time PCR showed decreased caspase-3 expression and decreased ratio of Bax/Bcl-2 expression in geneticin-treated animal model. Conclusion : Geneticin appears to exert a neuroprotective effect against perinatal H-I brain injury at least via anti-apoptosis. However, more experiments are needed in order to demonstrate the usefulness of geneticin as a preventive and rescue treatment for H-I brain injuries of neonatal brain.

Processed Panax ginseng, Sun Ginseng, Decreases Oxidative Damage Induced by tert-butyl Hydroperoxide via Regulation of Antioxidant Enzyme and Anti-apoptotic Molecules in HepG2 Cells

  • Lee, Hye-Jin;Kim, Jin-Hee;Lee, Seo-Young;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.248-255
    • /
    • 2012
  • Potential antioxidant effect of processed ginseng (sun ginseng, SG) on oxidative stress generated by tert-butyl hydroperoxide (t-BHP) was investigated in HepG2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and lactate dehydrogenase (LDH) leakage test demonstrated that SG dose-dependently prevents a loss of cell viability against t-BHP-induced oxidative stress. Also, SG treatment dose-dependently relieved the increment of activities of hepatic enzymes, such as aspartate aminotrasferase and alanine aminotransferase, and lipid peroxidation mediated by t-BHP treatment in HepG2 cells. SG increased the gene expression of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. However, high dose of SG treatment caused decrease in mRNA level of glutathione peroxidase as compared to low dosage of SG-treated cells. The gene expression of glutathione reductase was found to be slightly increased by SG treatment. In addition, SG extract attributed its hepaprotective effect by inducing the mRNA level of bcl-2 and bcl-xL but reducing that of bax. But, the gene expression of bad showed no significant change in SG-treated HepG2 cells. These findings suggest that SG has hepatoprotective effect by showing reduction of LDH release, activities of hepatic enzymes and lipid peroxidation and regulating the gene expression of antioxidant enzymes and apoptosis-related molecules against oxdative stress caused by t-BHP in HepG2 cells.

Inhibition of Nitric Oxide-induced Neuronal Apoptosis in PC12 Cells by Epigallocatechin Gallate

  • Jung, Ji-Yeon;Jeong, Yeon-Jin;Han, Chang-Ryoung;Kim, Sun Hun;Kim, Hyun-Jin;Lee, Ki-Heon;Park, Ha-Ok;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2005
  • In the central nervous system, nitric oxide (NO) is associated with many pathological diseases such as brain ischemia, neurodegeneration and inflammation. The epigallocatechin gallate (EGCG), a major compound of green tea, is recognized as protective substance against neuronal diseases. This study is aimed to investigate the effect of EGCG on NO-induced cell death in PC12 cells. Administration of sodium nitroprusside (SNP), a NO donor, decreased cell viability in a dose- and time-dependent manner and induced genomic DNA fragmentation with cell shrinkage and chromatin condensation. EGCG diminished the decrement of cell viability and the formation of apoptotic morphologenic changes as well as DNA fragmentation by SNP. EGCG played as an antioxidant that attenuated the production of reactive oxygen species (ROS) by SNP. The cells treated with SNP showed downregulation of Bcl-2, but upregulation of Bax. EGCG ameliorated the altered expression of Bcl-2 and Bax by SNP. The release of cytochrome c from mitochondria into cytosol and expression of voltage -dependent anion channel (VDAC)1, a cytochrome c releasing channel in mitochondria, were increased in SNP-treated cells, whereas were attenuated by EGCG. The enhancement of caspase-9, preceding mitochondria-dependent pathway, caspase-8 and death receptor-dependent pathway, as well as caspase-3 activities were suppressed by EGCG. SNP upragulated Fas and Fas-L, which are death receptor assembly, whereas EGCG ameliorated the expression of Fas enhanced by SNP. These results demonstrated that EGCG has a protective effect against SNP-induced apoptosis in PC12 cells, through scavenging ROS and regulating the mitocondria- and death receptor-mediated signal pathway. The present study suggest that EGCG might be a natural neuroprotective substance.

Terpinen-4-ol Induces Autophagic and Apoptotic Cell Death in Human Leukemic HL-60 Cells

  • Banjerdpongchai, Ratana;Khaw-on, Patompong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7537-7542
    • /
    • 2013
  • Background: Terpinen-4-ol, a monoterpene, is found as the main component of essential oil extracts from many plants. In this study apoptotic and autophagic types of cell death induced by terpinen-4-ol and associated mechanisms were investigated in human leukemic HL-60 cells. Materials and Methods: The cytotoxicity of human leukemic U937 and HL-60 cells was determined by MTT assay. Cytochrome c release, expression of Bax, Bcl-2, Bcl-xl and cleaved Bid were determined by Western blotting. Cell morphology was examined under a transmission electron microscope. LC3-I/II, ATG5 and Beclin-1 levels were detected by immunoblotting. Results: Terpinen-4-ol exhibited cytotoxicity to human leukemic HL-60 but not U937 cells. The apoptotic response to terpinen-4-ol in HL-60 cells was due to induction of cytochrome c release from mitochondria and cleavage of Bid protein after the stimulation of caspase-8. There was a slightly decrease of Bcl-xl protein level. The characteristic cell morphology of autophagic cell death was demonstrated with multiple autophagosomes in the cytoplasm. At the molecular level, the results from Western blot analysis showed that terpinen-4-ol significantly induced accumulation of LC3-I/II, ATG5 and Beclin-1, regulatory proteins required for autophagy in mammalian cells. Conclusions: Terpinen-4-ol induced-human leukemic HL-60 cell death was via both autophagy and apoptosis.

Apoptosis Inducing Effects of 6-Methoxydihydrosanguinarine in HT29 Colon Carcinoma Cells

  • Lee, Yong-Jin;Yin, Hu-Quan;Kim, Young-Ho;Li, Guang-Yong;Lee , Byung-Hoon
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1253-1257
    • /
    • 2004
  • 6-Methoxydihydrosanguinarine (6ME), a benzophenanthridine alkaloid derived from the methanol extracts of Hylomecon hylomeconoides, showed a dose-dependent effect at 1-10 ${\mu}M$ on causing apoptotic cell death in HT29 colon carcinoma cells $(IC_{50} = 5.0{\pm}0.2 {\mu}M)$. Treatment of HT-29 cells with 6ME resulted in the formation of internucleosomal DNA fragmentation. Treatment of the cells with 6ME caused activation of caspase-3, -8 and 9 protease and subsequent proteolytic cleavage of poly(ADP-ribose)polymerase. 6ME increased the expression of p53 and Bax and decreased the expression of Bid. These results indicate that p53 and proapoptotic Bcl-2 family proteins might participate in the antiproliferative activity of 6ME in HT29 cells.

Effect of Samhwangsasim-tang and Daehwanghwangryunsasim-tang on Palmitate-induced Lipogenesis in HepG2 cells (Palmitic acid로 지방 축적을 유도한 HepG2 cell에 대한 삼황사심탕과 대황황련사심탕의 효과 연구)

  • Um, Eun sik;Kim, Young Chul
    • The Journal of Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.62-76
    • /
    • 2016
  • Objectives: The goal of this study was to investigate the anti-lipogenic effects of Samhwangsasim-tang(SHT), Daehwanghwangryunsasim-tang(DHT) aqueous extract on HepG2 cells with palmitate. Materials and Methods: HepG2 cells treated with palmitate were used in this study as hepatic steatosis model. Cells were treated with different concentrations of SHT, DHT aqueous extract for 24 hours. Cell viability and cytotoxicity were analyzed by MTT assay. Expressions of Bcl-2, Bax, Survivin, P21, TGF-${\beta}1$, LXR-${\alpha}$, ChREBP, ACC1, SCD1 mRNA were determined by Real-time PCR. Apoptosis of cells was detected by ELISA and FACS. Expression level of caspase-3 was studied by Western blot. Lipid accumulation was indicated by Oil Red O staining. Results: SHT, DHT aqueous extract had no cytotoxicity, but decreased palmitate-induced lipid accumulation in HepG2 cells. SHT aqueous extract suppressed fatty acid synthesis by inhibiting LXR-${\alpha}$, ChREBP, SCD1 activation and increasing TGF-${\beta}1$ expression level. DHT aqueous extract also suppressed fatty acid synthesis by decreasing ChREBP expression and increasing TGF-${\beta}1$ expression. Apoptosis of lipid accumulated cells was increased by enhanced activities of P21, caspase-3 and inhibited expressions of Bcl-2, Survivin. Conclusions: These results suggest that SHT and DHT have an anti-lipogenic effects on lipid accumulation of hepatic cell. Also SHT and DHT have an efficacy to increase apoptosis of adipocyte without cytotoxicity. Therefore, SHT and DHT might have potential clinical applications for treatment of hepatic steatosis.

Neuroprotective effect of Deodeok (Codonopsis lanceolata) bud extracts in H2O2-stimulated SH-SY5Y cells (더덕순 에탄올 추출물의 신경세포 보호 효과)

  • Hee Sun Yang;In Guk Hwang;Ae-jin Choi;Jeong-sook Choe
    • Journal of Nutrition and Health
    • /
    • v.56 no.2
    • /
    • pp.140-154
    • /
    • 2023
  • Purpose: Deodeok (Codonopsis lanceolata) is generally used in conventional medicines and is considered to have remedial properties to cure several diseases. However, application of the C. lanceolata bud as a novel food ingredient has not been fully explored. Hydrogen peroxide (H2O2) is associated with the production of oxidative damage that results in mutagenesis, carcinogenesis, and cell death. This study examines the neuroprotective effect of C. lanceolate bud extracts (CLBE) on H2O2-stimulated apoptosis in SH-SY5Y cells. Methods: C. lanceolata bud of length 10 to 15 cm was collected and extracted using 70% ethanol. Cytotoxicity was evaluated by the EZ-cytox reagent, measurement of lactic dehydrogenase (LDH) release and reactive oxygen species (ROS). The morphological changes of the nuclei were determined using the Hoechst 33258 dye. Enzyme activities were analyzed using the caspase activity assay kit. Related protein expressions were quantified by the Western blot immunoassay in H2O2-stimulated SH-SY5Y cells. Results: Cell viability, LDH release and ROS generation, demonstrated neuroprotective effects of CLBE in H2O2-stimulated SH-SY5Y cells. The occurrence of apoptosis in H2O2-stimulated cells was confirmed by caspase activity, which was increased in H2O2-stimulated SH-SY5Y cells compared to the unexposed group. Pretreatment of CLBE was observed to inhibit the H2O2-stimulated apoptosis. In addition, exposure to CLBE resulted in increased expression of the Bcl-2 (B cell lymphoma 2) protein and decreased expression of the Bax (Bcl2 associated X) protein. Conclusion: This study shows that exposure to CLBE alleviates the H2O2-stimulated neuronal damage in SH-SY5Y cells. Our results indicate the potential application of CLBE in neurodegenerative disease therapy or prevention.

Regulation of Bcl-2 Family and Cyclooxygenases by Furanoterpenoids Isolated from a Marine Sponge Swcotragus nt. in Human Lung Cancer A549 Cells. (인체폐암세포의 Bcl-2 family 및 cyclooxygenases의 발현에 미치는 해면동물 Sarcotragus sp. 유래 furanoterpenoids의 영향)

  • 최영현;최혜정;김남득;정지형
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.445-452
    • /
    • 2004
  • We investigated the cytotoxic effects of seven furanoterpenoids 〔sarcotin A, epi-sarcotin A, ircinin-1, epi-sarcotrine B, sarcotin I, (8E, l3Z, 20Z)-strobilinin/(7E,l3Z, 20Z)-felixinin and (7E,12E,18R,20Z)-variabilin〕 isolated from the sponge Sarcotragus sp. (the order Dictyoceratida) on the growth of A549 human lung carcinoma cells. MTT data revealed that sarcotin A and (7E,12E,18R,20Z)-variabilin exhibited higher potencies on the anti-proliferative activities than the other compounds in A549 cells. The growth inhibition by treatment with compounds (especially epi-sarcotin A, ircinin-1 and epi-sarcotrine B) were associated with the induction of apoptotic cell death through the concentration-dependent increase of Bax/Bcl-2 ratio in a p53-dependent or independent pathway Additionally, epi-sarcotin A and ircinin-1 strongly inhibited the levels of cyclooxygenase (COX)-2 expression without alteration of COX-1. Taken together, the results suggest that the furanoterpenoids from the marine sponge have strong potentials as candidates for anti-cancer drugs.