• Title/Summary/Keyword: BASINS

Search Result 934, Processing Time 0.029 seconds

Development and Evaluation of Sediment Delivery Ratio Equation using Clustering Methods for Estimation of Sediment Discharge on Ungauged Basins in Korea (국내 미계측 유역의 유사유출량 예측을 위한 군집별 유사전달율 산정식 도출 및 평가)

  • Lee, Seoro;Park, Sang Deog;Shin, Seung Sook;Kim, Ki-sung;Kim, Jonggun;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.537-547
    • /
    • 2018
  • Sediment discharge by rainfall runoff affects water quality in rivers such as turbid water, eutrophication. In order to solve various problems caused by soil loss, it is important to establish a sediment management plan for watersheds and rivers in advance. However, there is a lack of sediment data available for estimating sediment discharge in ungauged basins.. Thus, reasonable research is very important to evaluate and predict the sediment discharge quantitatively. In this study, cluster analysis was conducted to classify gauged watersheds into hydrologically homogeneous groups based on the watershed characteristics. Also, this study suggests a method to efficiently predict the sediment discharge for ungauged basins by developing and evaluating the SDR equations based on the PA-SDR module. As the result, the SDR equations for the classified watersheds were derived to predict the most reasonable sediment discharge of ungauged basins with 0.24 % ~ 10.89 % errors. It was found that the optimal parameters for the gauged basins reflect well characteristic of sediment movement. SDR equations proposed in this study will be available for estimating sediment discharge on ungauged basins. Also it is possible to utilize establishing the appropriate sediment management plan for integrated management of watershed and river in Korea.

ASSESSMENT AND CONTROL OF TOTAL NUTRIENT LOADS IN WATERSHED AND STREAM NETWORK IN SOUTH-WEST TEXAS

  • Lee, Ju-Young;Choi, Jae-Young
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, the population growth and agricultural development are rapidly undergoing in the South-West Texas. The junction of three river basins such as Lavaca river basin, Colorado-Lavaca Coastal basin and Lavaca-Guadalupe Coastal basin, are interesting for non-point and point source pollutant modeling: Especially, the 2 basins are an intensively agricultural region (Colorado-Lavaca Coastal/Lavaca-Guadalupe Coastal basins) and several cities are rapidly extended. In case of the Lavaca river basin, there are many range land. Several habitat types wide-spread over three relatively larger basins and five wastewater discharge regions are located in there. There are different hazardous substances which have been released. Total nutrient loads are composed of land surface load and river load as Non-point source and discharge from wastewater facilities as point source. In 3 basins region, where point and non-point sources of poll Jtion may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to how to assess and control the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern as non-point source with water quality related to pesticides, fertilizer, and nutrients and as point source with wasterwater discharge from cities. The GIS technique has been developed to aid in the point and non-point source analysis of impacts to natural resource within watershed. This project shows the losses in $kg/km^2/year$ of BOD (Biological Oxygen Demand), TN (Total Nitrogen) and TP (Total Phosphorus) in the runoff from the surface of 3 basins. In the next paper, sediment contamination will show how to evaluate in Estuarine habitats of these downstream.

  • PDF

Determination of Prior Areas for Livestock Excreta Pollution Survey (가축분뇨실태조사를 위한 우선 조사 대상지역 선정 방안 도출)

  • Ryu, Hong-Duck;Park, Bae Kyung;Chung, Eu Gene;Ahn, Ki Hong;Choi, Won-Sik;Kim, Yongseok;Rhew, Doughee
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1085-1099
    • /
    • 2015
  • The purposes of this study were to suggest the methodology to select prior areas in the environmental pollution survey for livestock excreta (EPSLE) as well as to elucidate the validity of the methodology. In this study, the prior areas in the EPSLE were determined by examining the number of compost facilities categorized according to the three levels of size including the basin, the sub-basin and the watershed, respectively, based on the data from "Annual Nation-wide Pollution Sources Survey (2012)". The results suggested that the list of prior basins were Nakdong, Geum, Youngsan and Han river basins in order. Also, it was examined that the prior sub-basins in the four river basins including Nakdong, Geum, Youngsan and Han rivers were Naesung Stream, Geumgang Gongju, Juam Dam and Namhan Downstream, respectively. The prior watersheds in the sub-basins of Naesung stream, Geumgang Gongju, Juam Dam and Namhan Downstream were Seocheon Downstream, Geum Stream, Gyeombaek Suwipyo and Yanghwa Stream, respectively. The validity of the methodology used in this study was elucidated by analyzing the correlation of the number of compost facilities with the concentrations of T-N and T-P observed in the end-points of sub-basins. The results of correlation analysis showed that the concentrations of T-N and T-P increased with the number of compost facilities. Specifically, there was the stronger correlation between the number of compost facilities and the concentrations of T-N than that for T-P. Consequently, it was proved that the methodology used in this work was valid and rational for the selection of prior areas in environmental pollution survey for EPSLE.

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

Development of a Method for Estimating Non-Point Pollutant Delivery Load of Each Reference Flow with Combination of BASINS/HSPF (BASINS/HSPF와 연계한 유황별 비점유달부하량 산정방법 개발)

  • Lee, Yong-Woon;Song, Kwang-Duck;Lee, Jae-Choon;Yoon, Kwang-Sik;Rhew, Doug-Hee;Lee, Su-Woong;Lee, Shin-Hoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.175-184
    • /
    • 2010
  • The purpose of this study is to develop a method for estimating the non-point pollutant delivery load of each reference flow(flows of dry, low, normal, abundant and flood seasons) with combination of BASINS/HSPF. The effectiveness of this method is evaluated by applying it to the watershed of Dongbok stream. The flow, BOD and T-P reliability indices(RI) of the BASINS/HSPF for the watershed of Dongbok stream are 1.59, 1.41, 1.28, respectively, and thus the similarity between measured and estimated values is high. The non-point pollutant load delivery ratios of BOD and T-P for the flows of dry, low and normal seasons, which are estimated by such constructed BASINS/HSPF, are 0.36 and 1.09, 0.82 and 2.19, 6.02 and 16.90, respectively, as compared with daily average of non-point loads for a year. These results show that the non-point pollutant delivery load should be estimated and applied for each reference flow, and in this case the method for estimating the non-point pollutant delivery load of each reference flow can be useful.

Relations between Physical and Mechanical Properties of Core Samples from the Bukpyeong and Pohang Basins (북평분지와 포항분지 시추코어의 물리적 성질과 역학적 성질간의 관계)

  • Kim, Hyunjin;Song, Insun;Chang, Chandong;Lee, Hikweon;Kim, Taehee
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.329-340
    • /
    • 2013
  • A geologic survey of the Bukpyeong and Pohang basins, as candidate basins for the geological storage of $CO_2$, was performed to evaluate storage capacity and security. To analyze the mechanical stability of the storage reservoir and cap rocks, we measured the porosity, seismic velocity, uniaxial strength, internal frictional angle, and Young's modulus of core samples recovered from the two basins. It is costly and sometimes impossible to conduct tests over the entire range of drill holes, and continuous logging data do not yield the mechanical parameters directly. In this study, to derive the mechanical properties of geologic formations from the geophysical logging data, we determined the empirical relations between the physical properties (seismic velocity, porosity, and dynamic modulus) and the mechanical properties (uniaxial strength, internal friction angle) of the core samples. From the comparison with our core test data, the best fits to the two basins were selected from the relations suggested in previous studies. The relations between uniaxial strength, Young's modulus, and porosity of samples from the Bukpyeong and Pohang basins are more consistent with certain rock types than with the locality of the basins. The relations between the physical and mechanical properties were used to estimate the mechanical rock properties of geologic formations from seismic logging data. We expect that the mechanical properties could also be used as input data for a modeling study to understand the mechanical instability of rock formations prior to $CO_2$ injection.

Pollutants Removal Efficiency of Rainfall-runoff from Dense Highland Field Areas in Multistage Sedimentation Basins - Focused on Jaun Area in Upstream Watershed of Lake Soyang - (고랭지 밭 밀집지역 다단계 침사지의 강우-유출 오염물질 제거 효율 - 소양호 상류의 자운지구를 중심으로 -)

  • Cho, Jae Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.170-180
    • /
    • 2018
  • Highland fields are concentrated in the Jaun area of Hongcheong-gun, a large amount of sediments are discharged from the highland fields. The sediment runoff affect the turbidity and water quality of the Soyang Lake, furthermore adversely affect water supply source of the capital region. There are several kinds of BMPs(Best management practices) to decrease the sedimentrunoff from the highland fields. Although construction cost of multistage sedimentation basins is very high, there is no actual survey data for the removal efficiency of suspended sediments and water quality in our country. In this study, stormwaterinflow and outflow of the multistage sedimentation basins were surveyed, and the removal efficiency of nonpoint source pollutants were analyzed. The stormwater survey results fortwo rainfall events show thatremoval efficiencies of SS, BOD and TP loads in the multistage sedimentation basins are 35%~62%, 24%~55%, 35%~58%, respectively. Although the measured efficiencies of the basins were lower than the theoretical efficiency, the proper operation and management can improve the removal rate of the basins. Turbid water problem in the upper parts of the Soyang River can be managed effectively through the additional installation of multistage sedimentation basins.

Quantitative Estimation of Nonpoint Source Load by BASINS/HSPF (BASINS/HSPF 모형을 활용한 비점오염부하의 정량적 평가)

  • Lee, Jae-Woon;Kwon, Hun-Gak;Yi, Youn-Jeong;Yoon, Jong-Su;Han, Kun-Yeun;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.965-975
    • /
    • 2012
  • Loading of NPS pollutant was valued through simulation by using BASINS/HSPF model which can simulate runoff volume in rainfall by time. For the verification of the model, it was analyzed the scatter diagram of the simulation value and measure value of water quality and runoff volume in Dongcheon estuary. Using the built model, a study on the time-variant characteristics of runoff and water quality was simulated by being classified into four cases. The result showed the simulation value was nearly same as that of the measured runoff. In the result of fit level test for measured value and simulated value, correlation of runoff volume was computed high by average 0.86 and in the water quality items, fit level of simulation and measurements was high by BOD 0.82, T-N 0.85 and T-P 0.79.

Analysis of Runoff Characteristics of Non-point Sources Pollutant and Application of BMP Using BASINS/WinHSPF Model (BASINS/WinHSPF 모형을 이용한 비점오염물질 유출특성 분석과 최적관리기법 적용)

  • Kim, Min Joo;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.88-100
    • /
    • 2014
  • This study analyzed runoff characteristics of non-point sources pollutant and evaluated removal of pollution by BMP(Best Management Practice) using BASINS/WinHSPF model. Hourly meterological data including input data was provided from 2010 to 2011 year to run HSPF model in Miho stream watershed. As the results of calibration and validation of the model, the model could be successfully performed to simulate the flow and water quality parameters. The apprehensive area of non-point source pollution was chosen by non-point source pollution per area of a tributary to the Miho stream and applied constructed wetland in area chosen. Three scenarios were based on installation area of an constructed wetland and HSPF model would be applied to estimate the pollutant removals through the constructed wetland. The removal rates of pollutants through the constructed wetland were estimated with the runoff and water quality parameters by the comparisons of before and after the constructed wetland application.

Determination of Effective Rainfall by US SCS Method and Regression Analysis (SCS방법 및 회귀분석에 의한 유출 강우량 결정)

  • 선우중호;윤용남
    • Water for future
    • /
    • v.10 no.2
    • /
    • pp.101-111
    • /
    • 1977
  • The analysis performed here is aimed to increase the familiarity of hydrologic process especially for the small basins which are densely gaged. Kyung An and Mu Shim river basins are selected as a represectative basin according to the criteria which UNESCO has establisheed back in 1964 and being operated under the auspice of Ministry of Construction. The data exerted from these basins is utilized for the determination of the characteristics of precipitation and runoff phenomena for the small basin, which is considerred as a typical Korean samll watershed. The methodology developed by Soil Conservation Service, USA for determination of runoff value from precipitation is applied to find the suitability of the method to Korean River Basin. The soil cover complex number or runoff curve number was determined by considering the type of soil, soil cover, land use and other factor such as antecent moisture content. The averag values of CN for Kyung An and Mushim river basins were found to be 63.9 and 63.1 under AMC II, however, the values obtained from soil cover complex was less than those from total precipitation and effective precicpitation by 10-30%. It may be worth to note that an attention has to be paid in the application of SCS method lo Korean river basin by adjusting 10-30% increase to the value obtained from soil cover complex. Finally, the design flood hydrograph was consturcted by employing unit hydrograph technique to the dimensionless mass curve. Also a stepwise multiple regression was performed to find the relationship between runoff and API, evapotranspiration rate, 5 days antecedent precipitation and daily temperature.

  • PDF