• Title/Summary/Keyword: BARTs

Search Result 26, Processing Time 0.023 seconds

The Rat Model in Microsurgery Education: Classical Exercises and New Horizons

  • Shurey, Sandra;Akelina, Yelena;Legagneux, Josette;Malzone, Gerardo;Jiga, Lucian;Ghanem, Ali Mahmoud
    • Archives of Plastic Surgery
    • /
    • v.41 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • Microsurgery is a precise surgical skill that requires an extensive training period and the supervision of expert instructors. The classical training schemes in microsurgery have started with multiday experimental courses on the rat model. These courses have offered a low threat supervised high fidelity laboratory setting in which students can steadily and rapidly progress. This simulated environment allows students to make and recognise mistakes in microsurgery techniques and thus shifts any related risks of the early training period from the operating room to the lab. To achieve a high level of skill acquisition before beginning clinical practice, students are trained on a comprehensive set of exercises the rat model can uniquely provide, with progressive complexity as competency improves. This paper presents the utility of the classical rat model in three of the earliest microsurgery training centres and the new prospects that this versatile and expansive training model offers.

Perioperative Epirubicin, Oxaliplatin, and Capecitabine Chemotherapy in Locally Advanced Gastric Cancer: Safety and Feasibility in an Interim Survival Analysis

  • Ostwal, Vikas;Sahu, Arvind;Ramaswamy, Anant;Sirohi, Bhawna;Bose, Subhadeep;Talreja, Vikas;Goel, Mahesh;Patkar, Shraddha;Desouza, Ashwin;Shrikhande, Shailesh V.
    • Journal of Gastric Cancer
    • /
    • v.17 no.1
    • /
    • pp.21-32
    • /
    • 2017
  • Purpose: Perioperative chemotherapy improves survival outcomes in locally advanced (LA) gastric cancer. Materials and Methods: We retrospectively analyzed patients with LA gastric cancer who were offered perioperative chemotherapy consisting of epirubicin, oxaliplatin, and capecitabine (EOX) from May 2013 to December 2015 at Tata Memorial Hospital in Mumbai. Results: Among the 268 consecutive patients in our study, 260 patients (97.0%) completed neoadjuvant chemotherapy, 200 patients (74.6%) underwent D2 lymphadenectomy, and 178 patients (66.4%) completed adjuvant chemotherapy. The median follow-up period was 17 months. For the entire cohort, the median overall survival (OS), 3-year OS rate, median progression-free survival (PFS), and 3-year PFS rate were 37 months, 64.4%, 31 months, and 40%, respectively. PFS and OS were significantly inferior in patients who presented with features of obstruction than in those who did not (P=0.0001). There was no difference in survival with respect to tumor histology (well to moderately differentiated vs. poorly differentiated, signet ring vs. non-signet ring histology) or location (proximal vs. distal). Survival was prolonged in patients with an early pathological T stage and a pathological node-negative status. In a multivariate analysis, postoperative pathological nodal status and gastric outlet obstruction on presentation significantly correlated with survival. Conclusions: EOX chemotherapy with curative resection and D2 lymphadenectomy is a suggested alternative to the existing perioperative regimens. The acceptable postoperative complication rate and relatively high resections, chemotherapy completion, and survival rates obtained in this study require further evaluation and validation in a clinical trial.

Reduction of Proliferation and Induction of Apoptosis are Associated with Shrinkage of Head and Neck Squamous Cell Carcinoma due to Neoadjuvant Chemotherapy

  • Sarkar, Shreya;Maiti, Guru Prasad;Jha, Jayesh;Biswas, Jaydip;Roy, Anup;Roychoudhury, Susanta;Sharp, Tyson;Panda, Chinmay Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6419-6425
    • /
    • 2013
  • Background: Neoadjuvant chemotherapy (NACT) is a treatment modality whereby chemotherapy is used as the initial treatment of HNSCC in patients presenting with advanced cancer that cannot be treated by other means. It leads to shrinkage of tumours to an operable size without significant compromise to essential oro-facial organs of the patients. The molecular mechanisms behind shrinkage due to NACT is not well elucidated. Materials and Methods: Eleven pairs of primary HNSCCs and adjacent normal epithelium, before and after chemotherapy were screened for cell proliferation and apoptosis. This was followed by immunohistochemical analysis of some cell cycle (LIMD1, RBSP3, CDC25A, CCND1, cMYC, RB, pRB), DNA repair (MLH1, p53) and apoptosis (BAX, BCL2) associated proteins in the same set of samples. Results: Significant decrease in proliferation index and increase in apoptotic index was observed in post-therapy tumors compared to pre-therapy. Increase in the RB/pRB ratio, along with higher expression of RBSP3 and LIMD1 and lower expression of cMYC were observed in post-therapy tumours, while CCND1 and CDC25A remained unchanged. While MLH1 remained unchanged, p53 showed higher expression in post-therapy tumors, indicating inhibition of cell proliferation and induction of apoptosis. Increase in the BAX/BCL2 ratio was observed in post-therapy tumours, indicating up-regulation of apoptosis in response to therapy. Conclusions: Thus, modulation of the G1/S cell cycle regulatory proteins and apoptosis associated proteins might play an important role in tumour shrinkage due to NACT.

Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon;Stevens, Molly
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.676-686
    • /
    • 2013
  • Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-${\beta}$1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

Interfacial modulus mapping of layered dental ceramics using nanoindentation

  • Theocharopoulos, Antonios L;Bushby, Andrew J;P'ng, Ken MY;Wilson, Rory M;Tanner, K Elizabeth;Cattel, Michael J
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.479-488
    • /
    • 2016
  • PURPOSE. The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS. YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A $5{\mu}m$ (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load - partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X - ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS. A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of $40{\mu}m$ in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION. The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.