• Title/Summary/Keyword: BARE GROUND

Search Result 110, Processing Time 0.021 seconds

Comparison of Growth Characteristics of 1- and 2-year-old Bare Root and Container Seedling of Chamaecyparis obtusa (편백 1, 2년생 노지묘와 용기묘의 생장특성 비교)

  • Song, Ki Sun;Cha, Young Geun;Choi, Jin Young;Kim, Jong Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.317-323
    • /
    • 2012
  • This study was performed in order to explore the growth characteristics by growing stage in the containerized seedling and the bare root seedling of Chamaecyparis obtusa Sieb. et Zucc., which is the major plantation species of Korean southland. The height growth of 1-year-old bare root seedlings was better than containerized seedlings, which grew in the containers with capacity of 31.2 mL and 300 mL. The root collar diameter growth was the best in the containerized seedlings of container with 300 mL. The 2-year-old bare root seedlings were surveyed to be better in the height and root collar diameter growth than the containerized seedlings of container with 300 mL. In the comparison of dry mass production, it was the highest in 32 mL containerized seedlings as for 1-year-old above ground and in 300 mL containerized seedlings as for below-ground and total dry mass production. In case of 2-year-old seedlings, it was indicated to be high in bare root seedling as for the part above ground and in dry mass production of the containerized seedling as for the part below ground. In the comparison on root morphological traits of seedlings such as the total root length, the root project area, the root surface area, the average diameter in root, and the root volume, all of 1 and 2-year -old containerized seedlings showed the higher growth than the bare root seedlings except the average diameter in root. Synthesizing the results of this experiment, the containerized seedlings are relatively excellent in root development compared to bare root seedlings in the process of producing seedlings of C. obtusa, thereby being judged to have grown into excellent seedlings.

Volatility of Herbicides Sprayed in Zoysia japonica Turf and Bare Soil (잔디밭과 나지에 산포된 주요 잔디밭용 제초제의 휘산)

  • 김석정;박진희;죽내안지;김길웅;신동현;허영조
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.3
    • /
    • pp.263-270
    • /
    • 1996
  • This experiment was conducted to investigate the loss of various herbicides by means of vola-tility from the turfgrass field and the hare ground with the different soil moisture contents and temperatures. Different herbicides were applied at the rates of 375 g a.i. /l0a of pendimethalin,250 g a.i. /l0a of napropamide, and 96.4 g a.i. /l0a of dicamba with 200 \ulcorner/10a of spray volume in the turfgrass(Zoysia japonica cut off 5cm) grown in pots(265.8 $cm^2$) and bared soil. The pots were placed in the growth chamber with 10,000 lux of light intensity(12h per day) at 25 and 35˚C for 7days. Amberlite XAD polymeric resin(20/50 mesh) was used as sampling media for herbicide airborne residues. Air flow was maintained at 10 \ulcorner /min by vacuum pump regulated with a factory calibrated flow meter. Herbicide airborne residues were extracted from the XAD resin with 300 ml of 1:1 acetone and hexane. The extracts were concentrated by rotary evaporation at 35˚C and dissolved in 1 ml MeCN for HPLC analysis. The airborne losses of the herbicide applied in the turfgrass and bare soil increased as the temperature and soil moisture contents were increased, regardless of the kinds of herbicide. Higher airborne residues was observed in the turfgrass pots than the bare soil pots. Pendimethalin and dicamba with higher vapor pressure gave rise to the increased loss of airborne herbicides, showing that 6.26 and 6.4% of average airborne loss in pendimethalin and dicamba, respectively, compared to 0.56% in napropamide. The amount of airborne losses in turfgrass was highest at one day after application and then a declined trend was observed as the time was prolonged. Key words. Herbicides, Turfgrass field, Bare ground, Volatility.

  • PDF

Distributional Characteristics of Vascular Plants and Plants Selection for Revegetation in Bare Ground of Lakeside in Artificial Lakes (인공호 호소사면 나대지의 식물분포 특성과 녹화를 위한 식물 종 선정)

  • Cheon, Kyeong-Sik;Kim, Kyung-Ah;Seo, Won-Bok;Jang, Jin-Hwan;Yoo, Ki-Oug
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.24-41
    • /
    • 2010
  • Distributional characteristics of vascular plants and plants selection for revegetation in bare ground of lakeside was investigated in nine artificial lakes. The vascular plants were composed of 64 families, 194 genera, 268 species, 3 subspecies, 30 varieties, 3 forma, totaling 304 taxa. Dominant species of nine investigated areas were represented as Ambrosia trifida, Calystegia hederacea, Matricaria matricariodes, Xanthium italicum. Dominant species of three parts based on the location of artificial lakes were as follows:Ambrosia trifida, Bidens tripartita, Calystegia hederacea, Equisetum arvense, Setaria viridis, Spergula arvensis, Torilis japonica in northern part (Lake Paro and Soyang); Calystegia hederacea, Matricaria matricariodes, Rumex crispus, Xanthium italicum in middle part (Lake Chungju, Daecheong, Andong and Imha); and Ambrosia artemisiifolia, Bidens frondosa, Chenopodium glaucum, Miscanthus sinensis var. purpurascens, Persicaria pubescens, Setaria viridis in southern part(Lake Juam, Hapcheon and Jinyang). Among the 304 taxa, Korean endemic, endangered and rare plants were not investigated. The naturalized plants were 46 taxa, and life form was Th-$R_5-D_4$-e type. Above the results, Calystegia hederacea, Equisetum arvense, Xanthium italicum, Matricaria matricariodes, and Spergula arvensis were considered with proper species for revegetation in bare ground of lakeside in artificial lakes.

Comparison of Play Ability of Soccer Fields with Natural Turfgrass, Artificial Turf and Bare Ground (천연잔디, 인조잔디 및 맨땅 축구장에서 축구 경기력 비교)

  • Lee, Jae-Pil;Park, Hyun-Chul;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.203-211
    • /
    • 2006
  • This study was initiated to investigate the difference of playing ability among soccer fields established with natural turfgrass, artificial turf and bare ground. The soccer fields with natural turfgrasses were established with cool-season grass(Kentucky bluegrass 80%+Perennial ryegrass 20%) and zoysiagrass. The artificial turf field was constructed with Konigreen $DV5000^{TM}$. Bare ground was sandy soil. Data such as ball rolling distance and vertical ball rebound were collected at the Sports Science Town of Konkuk University from 2005 to 2006. A ball in the study was Hummel Air Vision #1, certified by KFA(Korea Football Association) in ball pressure of 1.01b. Ball rolling distance was the longest on bare ground(13.6m), followed by artificial grass(11.4m), cool-season grass(7.8m) and zoysiagrass(4.7m). It decreased with lower frequency in use, stronger rigidity and higher density of turfgrass. Vertical ball rebound was the highest on bare ground(1.0m), followed by artificial grass(0.9m), cool-season grass(0.6m) and zoysiagrass(0.4m). It was lower under conditions of low use frequency, strong rigidity, and high density. Both ball rolling distance and vertical ball rebound were not greatly affected by cool-season grass maintained with high intensity of culture by years after establishment. However, zoysiagrass field under low intensity of culture showed longer in ball rolling distance and higher in vertical ball rebound with time after establishment.

The Effects of Shoe Type on Ground Reaction Force

  • Yi, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The purpose of this study is to analyze the effects of both various shoe types and bare feet on ground reaction force while walking. Ten first-year female university students were selected. A force platform(Kistler, Germany) was used to measure ground reaction force. Six types of shoe were tested: flip flops, canvas shoes, running shoes, elevated forefoot walking shoes, elevated midfoot walking shoes, and five-toed shoes. The control group was barefooted. Only vertical passive/active ground reaction force variables were analyzed. The statistical analysis was carried out using the SAS 9.1.2 package, specifically ANOVA, and Tukey for the post hoc. The five-toed shoe had the highest maximum passive force value; while the running shoe had the lowest. The first active loading rate for running shoes was the highest; meanwhile, bare feet, the five-toed shoe, and the elevated fore foot walking shoe was the lowest. Although barefoot movement or movement in five toed shoes increases impact, it also allows for full movement of the foot. This in turn allows the foot arch to work properly, fully flexing along three arches(transverse, lateral, medial), facilitating braking force and initiating forward movement as the tendons, ligaments, and muscles of the arch flex back into shape. In contrast movement in padded shoes have a tendency to pound their feet into the ground. This pounding action can result in greater foot instability, which would account for the higher loading rates for the first active peak for padded shoes.

Thermo-hydraulic Numerical Analysis for the Leakage of Buried District Heating Pipe (열수송관의 누수에 대한 열-수리적 수치해석)

  • Shin, Hosung;Hong, Seung-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.17-26
    • /
    • 2022
  • Domestic district heating system needs safety management guidelines using the change of surface temperature to detect damages to buried heat pipes. This paper performed numerical analyses on the temperature change of ground surface due to the burial and leakage of heat pipes. Temperature difference between the ground surface above the buried heat pipes and the surrounding surface rises to a crescendo between 3 am and 8 am. It is more significant in winter rather than in summer. Low groundwater level magnifies the temperature increase of the ground surface by the heat pipe, which is smaller in the asphalt pavement than in the bare soil. Without leakage of the buried heat pipe, the temperature increment on the ground surface by the heat pipe is within 3.0℃ in the bare soil and 3.5℃ in the asphalt pavement. Leakage of the supply heat pipe in the bare soil increases the temperature on the ground surface gradually in the summer but rapidly in the winter. Asphalt pavement shows a lower increment and increasing rate of the temperature on the ground surface due to pipe leakage than bare soil surface. And leakage on both sides of the supply pipe takes 1-2 days for the temperature difference from the surrounding soil surface to reach 10℃.

Investigation of the Ground Reaction Force Parameters According to the Shoe's heel Heights and Landing Distance during Downward Stairs on Bus (버스계단 내리기 시 구두 힐 높이와 착지거리에 따른 지면반력 파라미터 조사)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.151-160
    • /
    • 2014
  • The purpose of this study was to investigate the GRF(ground reaction force) parameters according to the shoes's heel heights and ground landing distances during downward stairs on bus. Participants selected as subject were consisted of young and healthy women(n=9, mean age: $21.30{\pm}0.48$ yrs, mean height: $164.00{\pm}3.05cm$, mean body mass: $55.04{\pm}4.41kg$, mean BMI: $20.47{\pm}1.76kg/m^2$, mean foot length: $238.00{\pm}5.37mm$). They were divided into 2-types of shoe's heel heights(0 cm/bare foot, 9 cm) and also were divides into downward stairs with 3 types of landing distance(20 cm, 35 cm, 50 cm). A one force-plate was used to collect the GRF(AMTI, USA) data from the sampling rate of 1000 Hz. The GRF parameters analyzed were consisted of the medial-lateral GRF, anterior-posterior GRF, vertical GRF, loading rate, Center of Pressure(${\Delta}COPx$, ${\Delta}COPy$, COP area) and Dynamic Postural Stability Index(MLSI, APSI, VSI, DPSI) during downward stairs on bus. Medial-lateral GRF and vertical GRF didn't show significant differences statistically according to the shoe's heel heights and landing distance, but 9 cm shoes heel showed higher vertical GRF than that of 0 cm bare foot in landing distance of 50 cm. Also anterior-posterior GRF didn't show significant difference statistically according to the shoe's heel heights, but landing distance of 20 cm showed higher than that of landing distances of 35 cm and 50 cm in anterior-posterior GRF. Loading rate didn't show significant difference statistically according to the landing distance, but 9 cm shoe's heel showed higher than that of 0 cm bare foot during downward stairs. The ${\Delta}COPy$ and COP area didn't show significant differences statistically according to the shoe's heel heights and landing distance, but 0 cm bare foot showed higher than that of 9 cm shoe's heel in ${\Delta}COPx$. Dynamic Postural Stability Index(MLSI, APSI, VSI, DPSI) didn't show significant differences statistically according to the landing distance, but 9 cm shoe's heel showed decreased value than that of 0 cm bare foot in dynamics balance. Considering the above, parameters of GRF showed different characteristics according to the shoe's heel heights and ground landing distances during downward stairs on bus.

On the Warming Effects due to Artificial Constructions in a Large Housing Complex (대규모 주택단지내의 인공구조물에 의한 승온화효과에 관한 연구)

  • 김해동;이송옥;구현숙
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.705-713
    • /
    • 2003
  • In mid-August 2002, under clear summer pressure patterns, we carried out an intensive meteorological observation to examine the warming effects due to artificial constructions in a large housing complex. We set an automatic weather system(AWS) at two places in a bare soil surface within a limited development district and an asphalt surface within a large apartment residence area, respectively. As a result of observation, it became clear that the difference of the surface air(ground) temperature between the bare soil surface and its peripheral asphalt area reached about 4$^{\circ}C$(13$^{\circ}C$) at the maximum from diurnal variation of surface temperatures on AWS data. Through the heat balance analysis using measurement data, it became clear that the thermal conditions at two places are dependent on the properties of surface material. The latent heat flux over the bare soil surface reached to about 300 W/㎡, which is more than a half of net radiation during the daytime. On the other hand, it was nearly zero over the asphalt surface. Hence, the sensible heat flux over the asphalt surface was far more than that of the bare soil surface. The sensible heat flux over the asphalt surface showed about 20∼30 W/㎡ during the night. It was released from asphalt surface which have far more heat capacity than that of bare soil surface.

The Study on the Embedded Active Device for Ka-Band using the Component Embedding Process (부품 내장 공정을 이용한 5G용 내장형 능동소자에 관한 연구)

  • Jung, Jae-Woong;Park, Se-Hoon;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, by embedding a bare-die chip-type drive amplifier into the PCB composed of ABF and FR-4, it implements an embedded active device that can be applied in 28 GHz band modules. The ABF has a dielectric constant of 3.2 and a dielectric loss of 0.016. The FR-4 where the drive amplifier is embedded has a dielectric constant of 3.5 and a dielectric loss of 0.02. The proposed embedded module is processed into two structures, and S-parameter properties are confirmed with measurements. The two process structures are an embedding structure of face-up and an embedding structure of face-down. The fabricated module is measured on a designed test board using Taconic's TLY-5A(dielectric constant : 2.17, dielectric loss : 0.0002). The PCB which embedded into the face-down expected better gain performance due to shorter interconnection-line from the RF pad of the Bear-die chip to the pattern of formed layer. But it is verified that the ground at the bottom of the bear-die chip is grounded Through via, resulting in an oscillation. On the other hand, the face-up structure has a stable gain characteristic of more than 10 dB from 25 GHz to 30 GHz, with a gain of 12.32 dB at the center frequency of 28 GHz. The output characteristics of module embedded into the face-up structure are measured using signal generator and spectrum analyzer. When the input power (Pin) of the signal generator was applied from -10 dBm to 20 dBm, the gain compression point (P1dB) of the embedded module was 20.38 dB. Ultimately, the bare-die chip used in this paper was verified through measurement that the oscillation is improved according to the grounding methods when embedding in a PCB. Thus, the module embedded into the face-up structure will be able to be properly used for communication modules in millimeter wave bands.

Evaluation of seismic design provisions for acceleration-sensitive non-structural components

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.611-623
    • /
    • 2019
  • A set of mid-rise bare and uniformly infilled reinforced-concrete frame buildings are analyzed for two different seismic intensities of ground-motions (i.e., 'Design Basis Earthquake' and 'Maximum Considered Earthquake') to study their floor response. The crucial parameters affecting seismic design force for acceleration-sensitive non-structural components are studied and compared with the guidelines of the European and the United States standards, and also with the recently developed NIST provisions. It is observed that the provisions of both the European and the United States standards do not account for the effects of the period of vibration of the supporting structure and seismic intensity of ground-motions and thereby provides conservative estimates of the in-structure amplification. In case of bare frames, the herein derived component amplification factors for both the design basis earthquake and the maximum considered earthquake exceeds with their recommended values in the European and the United States standards for non-structural components having periods in vicinity of the higher modes of vibration, whereas, in case of infilled frames, component amplification factors exceeds with their recommended value in the European standard for non-structural components having periods in vicinity of the fundamental mode of vibration, and only for the design basis earthquake. As a consequence of these observations, as well as capping on the design force (in case of United states standard and NIST provisions), in case of the design basis earthquake, the combined amplification factor is underestimated for non-structural components having periods in vicinity of the higher modes of vibration of bare frames, and also for non-structural components having periods in vicinity of the fundamental mode of vibration of infilled frames. At the maximum considered earthquake demand, excepting non-structural components having periods in vicinity of the higher modes of vibration of bare frames, all provisions generally provide conservative estimates of the design floor accelerations.