• Title/Summary/Keyword: B1-field distribution

Search Result 223, Processing Time 0.023 seconds

A Study on the Dose Assessment Methodology Using the Probabilistic Characteristics of TL Element Response (확률분포 특성을 이용한 열형광선량계의 선량평가방법에 관한 연구)

  • Cho, Dae-Hyung;Oh, Jang-Jin;Han, Seung-Jae;Na, Seong-Ho;Hwang, Won-Guk;Lee, Won-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.123-138
    • /
    • 1998
  • Characteristics of element responses of Panasonic UD802 personnel dosimeters in the X, ${\beta}$, ${\gamma}$, ${\gamma}/X$, ${\gamma}/{\beta}$ and ${\gamma}$/neutron mixed fields were assessed. A dose-response algorithm has been developed to decide the high probability of a radiation type and energy by using the distribution in all six ratios of the multi-element TLD. To calculate the 4-element response factors and ratios between the elements of the Panasonic TLDs in the X, $\beta$, and $\gamma$ radiation fields, Panasonic’s UD802 TLDs were irradiated with KINS’s reference irradiation facility. In the photon radiation field, this study confirms that element-3 (E3) and element-4 (E4) of the Panasonic TLDs show energy dependent both in low- and intermediate-energy range, while element-1 (E1) and element-2 (E2) show little energy dependency in the entire whole range. The algorithm, which was developed in this study, was applied to the Panasonic personnel dosimetry system with UD716AGL reader and UD802 TLDs. Performance tests of the algorithm developed was conducted according to the standards and criteria recommended in the ANSI N13.11. The sum of biases and standard deviations was less than 0.232. The values of biases and standard deviations are distributed within a triangle of a lateral value of 0.3 in the ordinate and abscissa, With the above algorithm, Panasonic TLDs satisfactorily perform optimum dose assessment even under an abnormal response of the TLD elements to the energy imparted. This algorithm can be applied to a more rigorous dose assessment by distinguishing an unexpected dose from the planned dose for the most practical purposes, and is useful in conducting an effective personnel dose control program.

  • PDF

Spatial Distribution of Aging District in Taejeon Metropolitan City (대전광역시 노령화 지구의 공간적 분포 패턴)

  • Jeong, Hwan-Yeong;Ko, Sang-Im
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.1-19
    • /
    • 2000
  • This study is to investigate and analyze regional patterns of aging in Taejeon Metropolitan city-the overpopulated area of Choong-Cheong Province-by cohort analysis method. According to the population structure transition caused by rapid social and economic changes, Korea has made a rapid progress in population aging since 1970. This trend is so rapid that we should prepare for and cope with aging society. It is not only slow to cope with it in our society, but also there are few studies on population aging of the geographical field in Korea. The data of this study are the reports of Population and Housing Censuses in 1975 and 1985 and General Population and Housing Censuses with 10% sample survey in 1995 taken by National Statistical Office. The research method is to sample as the aging district the area with high aged population rate where the populations over 60 reside among total population during the years of 1975, 1985, 1995 and to sample the special districts of decreasing population where the population decreases very much and the special districts of increasing population in which the population increases greatly, presuming that the reason why aged population rate increases is that non-elderly population high in mobility moves out. It is then verified and ascertained whether it is true or not with cohort analysis method by age. Finally regional patterns in the city are found through the classification and modeling by type based on the aging district, the special districts of decreasing population, and the special districts of increasing population. The characteristics of the regional patterns show that there is social population transition and that non-elderly population moves out. The aging district with the high aged population rate is divided into high-level keeping-up type, relative falling type below the average of Taejeon city in aging progress, and relative rising type above the average of the city. This district can be found at both the central area of the city and the suburbs because Taejeon city has the characteristic of over-bounded city. But it cannot be found at the new built-up area with the in-migration of large population. The special districts of decreasing population where the population continues to decrease can be said to be the population doughnuts found at the CBD and its neighboring inner area. On the other hand, the special districts of increasing population where the population continues to increase are located at the new built-up area of the northern part in Taejeon city. The special districts of decreasing population are overlapping with the aging district and higher in aged population rate by the out-migration of non-elderly population. The special districts of increasing population are not overlapping with the aging district and lower in aged population rate by the in-migration of non-elderly population. To clarify the distribution map of the aging district, the special districts of decreasing and increasing population and the aging district are divided into four groups such as the special districts of decreasing population group-the same one as the aging district, the special districts of decreasing population group, the special districts of increasing population group, and the other district. With the cohort analysis method by age used to investigate the definite increase and decrease of aging population through population transition of each group, it is found that the progress of population aging is closely related to the social population fluctuation, especially that aged population rate is higher with the out-migration of non-elderly population. This is to explain each model of CBD, inner area, and the suburbs after modeling the aging district, the special districts of decreasing population, and the special districts of increasing population in Taejeon city. On the assumption that the city area is a concentric circle, it is possible to divide it into three areas such as CBD(A), the inner area(B), and the suburbs(C). The special districts of increasing and decreasing population in the city are divided into three districts-the special districts of decreasing population(a), the special districts of increasing population(b), and the others(c). The aging district of this city is divided into the aging district($\alpha$) and the others($\beta$). And then modeling these districts, it is probable to find regional patterns in the city. $Aa{\alpha}$ and $Ac{\beta}$ patterns are found in the CBD, in which $Aa{\alpha}$ is the special district of decreasing population and is higher in aged population rate because of aged population low in mobility staying behind and out-migration of non-elderly population. $Ba{\alpha}$, $Ba{\beta}$, $Bb{\beta}$, and $Bc{\beta}$ patterns are found in the inner area, in which neighboring area $Ba{\alpha}$ pattern is located. $Bb{\beta}$ pattern is located at the new developing area of newly built apartment complex. $Cb{\beta}$, $Cc{\alpha}$, and $Cc{\beta}$ patterns are found in the suburbs, among which $Cc{\alpha}$ pattern is highest in population aging. It is likely that the $Cc{\beta}$ under housing land readjustment on a large scale will be the $Cb{\beta}$ pattern. As analyzed above, marriage and out-migration of new family, non-elderly population, with house purchase are main factors in accelerating population aging in the central area of the city. Population aging is responsible for the great increase of aged population with longer life expectancy by the low death rate, the out-migration of non-elderly population, and the age group of new aged population in the suburbs. It is necessary to investigate and analyze the regional patterns of population aging at the time when population problems caused by aging as well as longer life expectancy are now on the increase. I hope that this will help the future study on population aging of the geographical field in Korea. As in the future population aging will be a major problem in our society, local autonomy should make a plan for the problem to the extent that population aging progresses by regional groups and inevitably prepare for it.

  • PDF

Implementation of Water Bolus in Patient with Large Tissue Defect (조직결손이 큰 환자에서 물 볼루스의 적용에 관한 고찰)

  • Park, Hyo-Kuk;Lee, Sang-Kyu;Yoon, Jong-Won;Cho, Jeong-Hee;Kim, Dong-Wook;Kim, Joo-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • Purpose: To demonstrate that water bolus in the patient surface can decrease the dose inhomogeneity by patient surface large tissue defect when the surface is in an electron-beam field. And We tried to find a easy way to water control. Methods and Materials: To demonstrate the use of water bolus in the irregular surface clinically, the case of a patient with myxofibrosarcoma of the chest wall who was treated with electrons. We obtained dose distribution using missing tissue option of PINACLE 6.2b (ADAC, USA). We fabricate a Mev-green for water bolus in patient with defect of tissue. Then put the water bolus which is vinyl packed water into the designed Mev-green. We peformed CT scan with CT-simulator. Three-dimensional (3D) dose distributions with and without water bolus in the large irregular chest wall were calculated for a representative patient. Resulting dose distributions and dose-volume histograms of water bolus were compared with missing tissue option and non bolus plans. We fabricate a new water control device. Results: Controlled Water bolus markedly decrease the dose heterogeneity, and minimizes normal tissue exposure caused by the surface irregularities of the chest wall mass. In the test case, The non bolus plan has a maximum target dose of 132%. After applying water bolus, the maximum target dose has been reduced substantially to 110.4%. The maximum target dose was reduced by 21.6% using this technique. Conclusion: The results showed that controlled water bolus could significantly improve the dose homogeneity in the PTV for patients treated with electron therapy using water control device. This technique may reduce the incidence of normal organ complications that occur after electron-beam therapy in irregular surface. And our new device shows handiness of water control.

  • PDF