• Title/Summary/Keyword: B.T.X

Search Result 1,086, Processing Time 0.033 seconds

NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER IN A HILBERT SPACE

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.91-101
    • /
    • 2008
  • Let H be a Hilbert space. Assume that $0{\leq}{\alpha}$, ${\beta}{\leq}1$ and r(t) > 0 in I = [0, T]. By means of the fixed point theorem of Leray-Schauder type the existence principles of solutions for two point boundary value problems of the form $\array{(r(t)x^{\prime}(t))^{\prime}+f(t,x(t),r(t)x^{\prime}(t))=0,\;t{\in}I\\x(0)=x(T)=0}$ are established where f satisfies for positive constants a, b and c ${\mid}{f(t,x,y){\mid}{\leq}a{\mid}x{\mid}^{\alpha}+b{\mid}y{\mid}^{\beta}+c\;\;for\;all(t,x,y){\in}I{\times}H{\times}H$.

  • PDF

Euler-Maruyama Numerical solution of some stochastic functional differential equations

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.13-30
    • /
    • 2007
  • In this paper we study the numerical solutions of the stochastic functional differential equations of the following form $$du(x,\;t)\;=\;f(x,\;t,\;u_t)dt\;+\;g(x,\;t,\;u_t)dB(t),\;t\;>\;0$$ with initial data $u(x,\;0)\;=\;u_0(x)\;=\;{\xi}\;{\in}\;L^p_{F_0}\;([-{\tau},0];\;R^n)$. Here $x\;{\in}\;R^n$, ($R^n$ is the ${\nu}\;-\;dimenional$ Euclidean space), $f\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^n,\;g\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^{n{\times}m},\;u(x,\;t)\;{\in}\;R^n$ for each $t,\;u_t\;=\;u(x,\;t\;+\;{\theta})\;:\;-{\tau}\;{\leq}\;{\theta}\;{\leq}\;0\;{\in}\;C([-{\tau},\;0];\;R^n)$, and B(t) is an m-dimensional Brownian motion.

  • PDF

The competition between superconductivity and antiferromagnetism in Y$_{1-x}Tb_xNi_2B_2C$ single crystals

  • Kim, H.B.;Doh, Hyeon-Jin;Cho, B.K.;Lee, Sung-Ik
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.206-209
    • /
    • 1999
  • Magnetic and superconducting properties in a series of intermetallic compounds Y$_{1-x}Tb_xNi_2B_2C$ were investigated by measuring the temperature dependent magnetization, M (T), and resitivity, ${\rho}$ (T). As Tb concentration, x, is increased, the superconducting transition temperature, T$_c$, decreases and eventually disappears in the vicinity of x = 0.5 while Neel temperature, T$_N$, appears abruptly near x = 0.4 and increases linearly. Of particular interest is the collision of superconductivity and antiferromagnetism around x = 0.4. The linear decrease of T$_c$ for dilute Tb concentration seems to follow the Abrikosov-Gor'kov behavior, while the decay of T$_c$ below T$_c$ is expected to originate from the effective magnetic field on the conduction electrons. The Ginzburg-Landau theory was phenomenologically constructed to explain this competition of superconducting order parameter and antiferromagnetic order parameter with the multi-band model.

  • PDF

A Study on the Daily Probability of Rainfall in the Taegu Area according to the Theory of Probaility (대구지방(大邱地方)의 확률일우량(確率日雨量)에 관(關)한 연구(硏究))

  • Kim, Young Ki;Na, In Yup
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.225-234
    • /
    • 1971
  • With the advance of civilization and steadily increasing population rivalry and competition for the use of the sewage, culverts, farm irrigation and control of various types of flood discharge have developed and will be come more and more keen in the future. The author has tried to calculated a formula that could adjust these conflicts and bring about proper solutions for many problems arising in connection with these conditions. The purpose of this study is to find out effective sewage, culvert, drainage, farm irrigation, flood discharge and other engineering needs in the Taegu area. If demands expand further a new formula will have to be calculated. For the above the author estimated methods of control for the probable expected rainfall using a formula based on data collected over a long period of time. The formula is determined on the basis of the maximum daily rainfall data from 1921 to 1971 in the Taegu area. 1. Iwai methods shows a highly significant correlation among the variations of Hazen, Thomas, Gumbel methods and logarithmic normal distribution. 2. This study obtained the following major formula: ${\log}(x-2.6)=0.241{\xi}+1.92049{\cdots}{\cdots}$(I.M) by using the relation $F(x)=\frac{1}{\sqrt{\pi}}{\int}_{-{\infty}}^{\xi}e^{-{\xi}^2}d{\xi}$. ${\xi}=a{\log}_{10}\(\frac{x+b}{x_0+b}\)$ ($-b<x<{\infty}$) ${\log}(x_0+b)=2.0448$ $\frac{1}{a}=\sqrt{\frac{2N}{N-1}}S_x=0.1954$. $b=\frac{1}{m}\sum\limits_{i=1}^{m}b_s=-2.6$ $S_x=\sqrt{\frac{1}{N}\sum\limits^N_{i=1}\{{\log}(x_i+b)\}^2-\{{\log}(x_0+b)\}^2}=0.169$ This formule may be advantageously applicable to the estimation of flood discharge, sewage, culverts and drainage in the Taegu area. Notation for general terms has been denoted by the following. Other notations for general terms was used as needed. $W_{(x)}$ : probability of occurranec, $W_{(x)}=\int_{x}^{\infty}f_{(n)}dx$ $S_{(x)}$ : probability of noneoccurrance. $S_{(x)}=\int_{-\infty}^{x}f_(x)dx=1-W_{(x)}$ T : Return period $T=\frac{1}{nW_{(x)}}$ or $T=\frac{1}{nS_{(x)}}$ $W_n$ : Hazen plot $W_n=\frac{2n-1}{2N}$ $F_n=1-W_x=1-\(\frac{2n-1}{2N}\)$ n : Number of observation (annual maximum series) P : Probability $P=\frac{N!}{{t!}(N-t)}F{_i}^{N-t}(1-F_i)^t$ $F_n$ : Thomas plot $F_n=\(1-\frac{n}{N+1}\)$ N : Total number of sample size $X_l$ : $X_s$ : maximum, minumum value of total number of sample size.

  • PDF

ITERATIVE METHODS FOR LARGE-SCALE CONVEX QUADRATIC AND CONCAVE PROGRAMS

  • Oh, Se-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.753-765
    • /
    • 1994
  • The linearly constrained quadratic programming(QP) considered is : $$ min f(x) = c^T x + \frac{1}{2}x^T Hx $$ $$ (1) subject to A^T x \geq b,$$ where $c,x \in R^n, b \in R^m, H \in R^{n \times n)}$, symmetric, and $A \in R^{n \times n}$. If there are bounds on x, these are included in the matrix $A^T$. The Hessian matrix H may be positive definite or negative semi-difinite. For large problems H and the constraint matrix A are assumed to be sparse.

  • PDF

An existence of solutions for an infinte diffusion constant

  • Ham, Yoon-Mee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.631-638
    • /
    • 1996
  • The parabolic free boundary problem with Puschino dynamics is given by (see in [3]) $$ (1) { \upsilon_t = D\upsilon_{xx} - (c_1 + b)\upsilon + c_1 H(x - s(t)) for (x,t) \in \Omega^- \cup \Omega^+, { \upsilon_x(0,t) = 0 = \upsilon_x(1,t) for t > 0, { \upsilon(x,0) = \upsilon_0(x) for 0 \leq x \leq 1, { \tau\frac{dt}{ds} = C)\upsilon(s(t),t)) for t > 0, { s(0) = s_0, 0 < s_0 < 1, $$ where $\upsilon(x,t)$ and $\upsilon_x(x,t)$ are assumed continuous in $\Omega = (0,1) \times (0, \infty)$.

  • PDF

HADAMARD-TYPE FRACTIONAL CALCULUS

  • Anatoly A.Kilbas
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1191-1204
    • /
    • 2001
  • The paper is devoted to the study of fractional integration and differentiation on a finite interval [a, b] of the real axis in the frame of Hadamard setting. The constructions under consideration generalize the modified integration $\int_{a}^{x}(t/x)^{\mu}f(t)dt/t$ and the modified differentiation ${\delta}+{\mu}({\delta}=xD,D=d/dx)$ with real $\mu$, being taken n times. Conditions are given for such a Hadamard-type fractional integration operator to be bounded in the space $X^{p}_{c}$(a, b) of Lebesgue measurable functions f on $R_{+}=(0,{\infty})$ such that for c${\in}R=(-{\infty}{\infty})$, in particular in the space $L^{p}(0,{\infty})\;(1{\le}{\le}{\infty})$. The existence almost every where is established for the coorresponding Hadamard-type fractional derivative for a function g(x) such that $x^{p}$g(x) have $\delta$ derivatives up to order n-1 on [a, b] and ${\delta}^{n-1}[x^{\mu}$g(x)] is absolutely continuous on [a, b]. Semigroup and reciprocal properties for the above operators are proved.

  • PDF

Magnetic properties of $(Nd_{1-x}R_x)_2Fe_{14}B$ (R=Y, Pr) ($(Nd_{1-x}R_x)_2Fe_{14}B$ (R=Y, Pr)의 자기특성)

  • 김만중;김윤배;김희태;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.271-274
    • /
    • 1998
  • Spin reorientation and magnetocrystalline anisotropy of magnetically aligned $(Nd_{1-x}R_x)_2Fe_{14}B$ (R=Y, Pr) power were studied. The spin reorientation temperature $(T_{SR})$ of $(Nd_{1-x}R_x)_2Fe_{14}B$ decreases linearly by increasing Pr-substitution with the ratio of ${\Delta}T_{SR}=-1.35$ K/Pr at.% in composition range of 0$\leq$x$\leq$0.75. The spin reorientation temperature of $(Nd_{1-x}R_x)_2Fe_{14}B$ decreases by increasing Pr-substitution to 118 K (x=0.5) then increases to 122 K (x=0.75). The spin reorientation angle at 4.2 K decreases by increasing rare earth substitution with the ratio of $\Delta$SRA=-0.073$^{\circ}$/Y at.% and $\Delta$SRA=-0.258$^{\circ}$/Pr at.% in composition range of 0$\leq$x$\leq$0.5. The spin reorientation is expected to disappear at x$\geq$0.9 in case of $(Nd_{1-x}R_x)_2Fe_{14}B$ and at x$\geq$0.8 in case of $(Nd_{1-x}R_x)_2Fe_{14}B$.

  • PDF

MAGNETIC PROPERTIES OF MELT-SPUN $F_{86-x}Al_{4}B_{10}Zr_{x}$ AMORPHOUS ALLOYS

  • Kim, K.J.;Park, J.Y.;Kim, K.Y.;Lee, J.S.;Noh, T.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.487-490
    • /
    • 1995
  • With the object of developing a new magnetic core materials for high frequency use, the crystallization behaviors and the soft magnetic properties of amorphous $F_{86-x}Al_{4}B_{10}Zr_{x}\;(5{\leq}x{\leq}10\;at%)$ alloys subjected to annealing treatment at wide temperature range were investigated. For optimally annealed $Fe_{86-x}Al_{4}B_{10}Zr_{x}$ alloys in amorphous state, rather good soft magnetic properties of ${\mu}_{e}=17000~25000,\;H_{c}=20~30$ mOe and $B_{10}{\geq}0.6$ T are obtained. However, as the alloys crystallize, the soft magnetic properties are largely dergely deteriorated, which is attributed principally to the narrow temperature gap between $T_{x1}$ and $T_{x2}$, which allows the nearly co-precipitation of bcc phase and Fe-B compounds in incipient crystallization stage.

  • PDF

SYMBOLIC DYNAMICS AND UNIFORM DISTRIBUTION MODULO 2

  • Choe, Geon H.
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.881-889
    • /
    • 1994
  • Let ($X, \Beta, \mu$) be a measure space with the $\sigma$-algebra $\Beta$ and the probability measure $\mu$. Throughouth this article set equalities and inclusions are understood as being so modulo measure zero sets. A transformation T defined on a probability space X is said to be measure preserving if $\mu(T^{-1}E) = \mu(E)$ for $E \in B$. It is said to be ergodic if $\mu(E) = 0$ or i whenever $T^{-1}E = E$ for $E \in B$. Consider the sequence ${x, Tx, T^2x,...}$ for $x \in X$. One may ask the following questions: What is the relative frequency of the points $T^nx$ which visit the set E\ulcorner Birkhoff Ergodic Theorem states that for an ergodic transformation T the time average $lim_{n \to \infty}(1/N)\sum^{N-1}_{n=0}{f(T^nx)}$ equals for almost every x the space average $(1/\mu(X)) \int_X f(x)d\mu(x)$. In the special case when f is the characteristic function $\chi E$ of a set E and T is ergodic we have the following formula for the frequency of visits of T-iterates to E : $$ lim_{N \to \infty} \frac{$\mid${n : T^n x \in E, 0 \leq n $\mid$}{N} = \mu(E) $$ for almost all $x \in X$ where $$\mid$\cdot$\mid$$ denotes cardinality of a set. For the details, see [8], [10].

  • PDF