• Title/Summary/Keyword: B-mode ultrasound images

Search Result 21, Processing Time 0.025 seconds

Automated Measurement System of Carotid Artery Intima-Media Thickness based on Dynamic Programming (다이나믹 프로그래밍 기반 경동맥 내막-중막 두께 자동측정 시스템)

  • Lee, Yu-Bu;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • In this paper, we present a method of detecting the boundary of the intima-media complex for automated measurement based on dynamic programming from carotid artery B-mode ultrasound images and then show the experimental results. We apply the dynamic programming for determining the optimal locations that a cost function is minimized. The cost function includes cost terms which are representing image features such as intensity, intensity gradient and geometrical continuity of the vessel interfaces. Moreover, we improve the boundary continuity by applying the B-spline to smooth the rough boundary due to noise such as speckle, dropout and weak edges. The proposed method has obtained more accurate reproducible results than conventional edge-detection by considering multiple image features and ensures efficient automated measurement by solving the problems of the inter- and intra-observer variability and its inefficiency due to manual measurement.

  • PDF

Construction of Static 3D Ultrasonography Image by Radiation Beam Tracking Method from 1D Array Probe (1차원 배열 탐촉자의 방사빔추적기법을 이용한 정적 3차원 초음파진단영상 구성)

  • Kim, Yong Tae;Doh, Il;Ahn, Bongyoung;Kim, Kwang-Youn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • This paper describes the construction of a static 3D ultrasonography image by tracking the radiation beam position during the handy operation of a 1D array probe to enable point-of-care use. The theoretical model of the transformation from the translational and rotational information of the sensor mounted on the probe to the reference Cartesian coordinate system was given. The signal amplification and serial communication interface module was made using a commercially available sensor. A test phantom was also made using silicone putty in a donut shape. During the movement of the hand-held probe, B-mode movie and sensor signals were recorded. B-mode images were periodically selected from the movie, and the gray levels of the pixels for each image were converted to the gray levels of 3D voxels. 3D and 2D images of arbitrary cross-section of the B-mode type were also constructed from the voxel data, and agreed well with the shape of the test phantom.

NDE Inspecting Techniques for Wind Turbine Blades Using Terahertz Waves (테라헤르츠파를 이용한 풍력터빈 블레이드 NDE 탐상 평가기법)

  • Im, Kwang-Hee;Kim, Sun-Kyu;Jung, Jong-An;Cho, Young-Tae;Woo, Yong-Deuck
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Terahertz waves (T-ray) was extensively studied for the NDE (nondestructive evaluation) of characterization of trailing edges for a use of turbines composed with composite materials. The used NDE system were consisted of both CW(Continuous wave) and TDS (Time domain spectroscopy). The FRP composites were utilized for two kinds of both trailing edges of wind energy (non-conducting polymeric composites) and carbon fiber composites with conducting properties. The signals of T-ray in the TDS (Time domain spectroscopy) mode resembles almost that of ultrasound waves; however, a terahertz pulse could not penetrate a material with conductivity unlike ultrasound. Also, a method was suggested to obtain the "n" in the materials, which is called the refractive index (n). The data of refractive index (n) could be solved for the trailing edges. The trailing edges were scanned for characterization and inspection. C-scan and B-scan images were obtained and best optimal NDE techniques were suggested for complicated geometry samples by terahertz radiation. Especially, it is found that the defect image of T-ray corresponded with defect locations for the trailing edges of wind mill.

Measurement and Clinical Analysis of Carotid Intima, Media and Intima-Media Thickness

  • Kim, Wuon-Shik;Jeong, Hwan-Taek;Bae, Jang-Ho
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.6-13
    • /
    • 2005
  • Individual clinical significance of each layer of CCA (common carotid artery) has not been well studied. We intended to measure the intima thickness (IT), media thickness (MT), and intima-media thickness (IMT) of CCA separately and tried to analyze the clinical significance. One hundred fifty one consecutive patients (mean age: $57{\pm}15$ years; 77 males, 74 females) underwent CCA scanning using high-resolution ultrasound. The images were off-line analyzed using B-mode ultrasound image processing, devised for individual measurement of IT and MT as well as IMT. The mean coefficients of variation of new method measuring IT, MT, and IMT separately were 0.16% for IMT and 0.21% for both IT and MT. The IT (p < 0.01), MT (p < 0.01) as well as IMT (p < 0.001) of patients with atherosclerotic disease were significantly thicker than that of the patients without atherosclerotic disease. Patients with hypertension showed significantly thicker IT (p < 0.01), MT (p < 0.001), and IMT (p < 0.001) than that of the patients without hypertension. However, only IT was thicker in patients with smoking (p<0.01) than that of the patients without smoking.

  • PDF

A study of the high resolution Ultrasound Diagnostic system for Dermatology (피부학(Dermatology)을 위한 고해상도 초음파 진단 장치에 관한 연구)

  • Lew, Jeom-Soo;Lim, Chun-Sung;Kim, Young-Kil
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.66-71
    • /
    • 1998
  • High spatial resolution ultrasonic imaging is necessary in several fields of investigation, in order to permit greater precision of clinical diagnosis in the dermatology, ophthalmology etc. We present a B-mode scan system using sector scanning probe of 20MHz center frequency. This developed system allow the high resolution image of 250${\mu}m$ in lateral and 80${\mu}m$ in axial, which of display the size of a $5mm {\times} 5mm$ image with 20 frames/sec. We have shown the images of various structural elements of the human skin and of the nail. We have compared the skin images obtained for each of the different age and we have shown in a general with the age, the atrophy of the skin thickness and the appearance of the abnormal hypoechogene band under epidermis (named SENEB : Sub Epidermal Non Echogene Band).

  • PDF

Automatic Boundary Detection of Carotid Intima-Media based on Multiresolution Snake (다해상도 스네이크를 통한 경동맥 내막-중막 경계선 자동추출)

  • Lee, Yu-Bu;Choi, Yoo-Joo;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.77-84
    • /
    • 2007
  • The intima media thickness(IMT) of the carotid artery from B mode ultrasound images has recently been proposed as the most useful index of individual atherosclerosis and can be used to predict major cardiovascular events. Ultrasonic measurements of the IMT are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the inter and intra observer variability and its inefficiency. In this paper, we present a multiresolution snake method combined with the dynamic programming, which overcomes the various noises and sensitivity to initialization of conventional snake. First, an image pyramid is constructed using the Gaussian pyramid that maintains global edge information with smoothing in the images, and then the boundaries are automatically detected in the lowest resolution level by minimizing a cost function based on dynamic programming. The cost function includes cost terms which are representing image features and geometrical continuity of the vessel interfaces. Since the detected boundaries are selected as initial contour of the snake for the next level, this automated approach solves the problem of the initialization. Moreover, the proposed snake improves the problem of converging th the local minima by defining the external energy based on multiple image features. In this paper, our method has been validated by computing the correlation between manual and automatic measurements. This automated detection method has obtained more accurate and reproducible results than conventional edge detection by considering multiple image features.

3D Ultrasound Panoramic Image Reconstruction using Deep Learning (딥러닝을 활용한 3차원 초음파 파노라마 영상 복원)

  • SiYeoul Lee;Seonho Kim;Dongeon Lee;ChunSu Park;MinWoo Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.255-263
    • /
    • 2023
  • Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.

Influence of Atherosclerosis Risk Factors on Carotid Intima, Media, and Intima-Media thickness

  • Kim, Wuon-Shik;Bae, Jang-Ho;Jin, Seung-Hyun;Park, Yong-Ki;Noh, Gi-Yong;Hwang, Jae-Ho
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2006
  • We intended to measure the IT, MT, and the IMT of carotid artery separately and tried to analyze the clinical significance. Two hundred and fifty consecutive patients (125 males, 125 females) underwent carotid artery scanning using high-resolution ultrasound. The images were off-line analyzed using B-mode ultrasound image processing, devised in our research. We measured the IT, MT, and IMT semi-automatically at the far wall of designated 1cm length of the right common carotid and calculated the average values over the 200 points. The IT (p < 0.05), MT (p < 0.05) as well as IMT (p < 0.01) of patients with atherosclerotic disease were significantly thicker than that of the patients without atherosclerotic disease. Patients with hypertension showed significantly thicker IT (p < 0.05), MT (p < 0.01), and IMT (p < 0.01) than that of the patients without hypertension. However, only IT was thicker in patients with smoking (p < 0.05) than that of the patients without smoking. Smoking was associated only with intima while hypertension was associated with the all three layer's thickness. This result suggests the atherosclerotic process can be different by cardiovascular risk factors.

  • PDF

Signal-Characteristic Analysis with Respect to Backing Material of PVDF-Based High-Frequency Ultrasound for Photoacoustic Microscopy (광음향 현미경을 위한 PVDF 기반 고주파수 초음파 변환기의 흡음층 소재에 따른 신호 특성 분석)

  • Lee, Junsu;Chang, Jin Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.112-119
    • /
    • 2015
  • Photoacoustic microscopy is capable of providing high-resolution molecular images, and its spatial resolution is typically determined by ultrasonic transducers used to receive the photoacoustic signals. Therefore, ultrasonic transducers for photoacoustic microscopy (PAM) should have a high operating frequency, broad bandwidth, and high signal-reception efficiency. Polyvinylidene fluoride (PVDF) is a suitable material. To take full advantage of this material, the selection of the backing material is crucial, as it influences the center frequency and bandwidth of the transducer. Therefore, we experimentally determined the most suitable backing material among EPO-TEK 301, E-Solder 3022, and RTV. For this, three PVDF high-frequency single-element transducers were fabricated with each backing material. The center frequency and -6 dB bandwidth of each transducer were ascertained by a pulse-echo test. The spatial resolution of each transducer was examined using wire-target images. The experimental results indicated that EPO-TEK 301 is the most suitable backing material for a PAM transducer. This material provides the highest signal magnitude and a reasonable bandwidth because a large portion of the energy propagates toward the front medium, and the PVDF resonates in the half-wave mode.

Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography

  • Ji Soo Choi;Boo-Kyung Han;Eun Sook Ko;Jung Min Bae;Eun Young Ko;So Hee Song;Mi-ri Kwon;Jung Hee Shin;Soo Yeon Hahn
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.749-758
    • /
    • 2019
  • Objective: To investigate whether a computer-aided diagnosis (CAD) system based on a deep learning framework (deep learning-based CAD) improves the diagnostic performance of radiologists in differentiating between malignant and benign masses on breast ultrasound (US). Materials and Methods: B-mode US images were prospectively obtained for 253 breast masses (173 benign, 80 malignant) in 226 consecutive patients. Breast mass US findings were retrospectively analyzed by deep learning-based CAD and four radiologists. In predicting malignancy, the CAD results were dichotomized (possibly benign vs. possibly malignant). The radiologists independently assessed Breast Imaging Reporting and Data System final assessments for two datasets (US images alone or with CAD). For each dataset, the radiologists' final assessments were classified as positive (category 4a or higher) and negative (category 3 or lower). The diagnostic performances of the radiologists for the two datasets (US alone vs. US with CAD) were compared Results: When the CAD results were added to the US images, the radiologists showed significant improvement in specificity (range of all radiologists for US alone vs. US with CAD: 72.8-92.5% vs. 82.1-93.1%; p < 0.001), accuracy (77.9-88.9% vs. 86.2-90.9%; p = 0.038), and positive predictive value (PPV) (60.2-83.3% vs. 70.4-85.2%; p = 0.001). However, there were no significant changes in sensitivity (81.3-88.8% vs. 86.3-95.0%; p = 0.120) and negative predictive value (91.4-93.5% vs. 92.9-97.3%; p = 0.259). Conclusion: Deep learning-based CAD could improve radiologists' diagnostic performance by increasing their specificity, accuracy, and PPV in differentiating between malignant and benign masses on breast US.