• Title/Summary/Keyword: B-doped Al

Search Result 66, Processing Time 0.029 seconds

Electrical conductivity of olivine type LiFe0.965Cr0.03B0.005PO4 and LiFe0.965Cr0.03Al0.005PO4 powders (올리빈형 LiFe0.965Cr0.03B0.005PO4 and LiFe0.965Cr0.03Al0.005PO4 분말의 전기전도도)

  • Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.141-146
    • /
    • 2010
  • $LiFePO_4$ doped with Cr showed improved electrochemical properties as a cathode material of lithium-ion batteries compared to the undoped. The improvement was thought that the doping would raise the electronic conductivity of the compounds. The electrical conductivity of $LiFe_{0.965}Cr_{0.03}B_{0.005}PO_4$ and $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ powder was measured in the temperature range from 30 to $80^{\circ}C$. The doped powders were synthesized via mechanochemical milling and subsequent heat treatment at 675~$750^{\circ}C$ for 5~10h. The doping enhanced grain growth and electrical conductivity. The electrical conductivity of the $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ powder at $30^{\circ}C$ was $1{\times}10^{-8}S/cm$, which was higher two orders of magnitude than that of the undoped.

Field emission properties of boron-doped diamond film (보론-도핑된 다이아몬드 박막의 전계방출 특성)

  • 강은아;최병구;노승정
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • Deposition conditions of diamond thin films were optimized using hot-filament chemical vapor deposition (HFCVD). Boron-doped diamond thin films with varying boron densities were then fabricated using B4C solid pellets. Current-voltage responses and field emission currents were measured to test the characteristics of field emission display (FED). With the increase of boron doping, the crystal size of diamond decreased slightly, but its quality was not changed significantly in case of small doping. The I-V characterization was performed for Al/diamond/p-Si, and the current of doped diamond film was increased $10^4\sim10^5$ times as compared with that of undoped film. In the field emission properties, the electrons were emitted with low electric field with the increase of doping, while the emission current increased. The onset-field of electron emission was 15.5 V/$\mu\textrm{m}$ for 2 pellets, 13.6 V/$\mu\textrm{m}$ for 3 pellets and 11.1 V/$\mu\textrm{m}$ for 4 pellets. With the incorporation of boron, the slope of Fowler-Nordheim graph was decreased, revealing that the electron emission behavior was improved with the decrease of the effective barrier energy.

  • PDF

Transparent Conductive Oxides for Display Applications

  • Szyszka, B.;Ruske, F.;Sittinger, V.;Pflug, A.;Werner, W.;Jacobs, C.;Kaiser, A.;Ulrich, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-185
    • /
    • 2007
  • We report on our material and process research on ZnO:Al films and on our investigations on wet chemical etching using a variety of etching solutions. We achieve resistivity as low as $750{\mu}{\Omega}cm$ for ZnO:Al films with film thickness of 140 nm. Etching with phosphorous acid allows for accurate fine patterning of the ZnO:Al films on glass substrates.

  • PDF

Conformal coating of Al-doped ZnO thin film on micro-column patterned substrate for TCO (TCO 응용을 위한 패턴된 기판위에 증착된 AZO 박막의 특성 연구)

  • Choi, M.K.;Ahn, C.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.28-28
    • /
    • 2009
  • Fabrications of antireflection structures on solar cell were investigated to trap the light and to improve quantum efficiency. Introductions of patterned substrate or textured layer for Si solar cell were performed to prevent reflectance and to increase the path length of incoming light. However, it is difficult to deposit conformally flat electrode on perpendicular plane. ZnO is II-VI compound semiconductor and well-known wide band-gap material. It has similar electrical and optical properties as ITO, but it is nontoxic and stable. In this study, Al-doped ZnO thin films are deposited as transparent electrode by atomic layer deposition method to coat on Si substrate with micro-scale structures. The deposited AZO layer is flatted on horizontal plane as well as perpendicular one with conformal 200 nm thickness. The carrier concentration, mobility and resistivity of deposited AZO thin film on glass substrate were measured $1.4\times10^{20}cm^{-3}$, $93.3cm^2/Vs$, $4.732\times10^{-4}{\Omega}cm$ with high transmittance over 80%. The AZO films were coated with polyimide and performed selective polyimide stripping on head of column by reactive ion etching to measure resistance along columns surface. Current between the micro-columns flows onto the perpendicular plane of deposited AZO film with low resistance.

  • PDF

Characterization of Hot Electron Transistors Using Graphene at Base (그래핀을 베이스로 사용한 열전자 트랜지스터의 특성)

  • Lee, Hyung Gyoo;Kim, Sung Jin;Kang, Il-Suk;Lee, Gi Sung;Kim, Ki Nam;Koh, Jin Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.147-151
    • /
    • 2016
  • Graphene has a monolayer crystal structure formed with C-atoms and has been used as a base layer of HETs (hot electron transistors). Graphene HETs have exhibited the operation at THz frequencies and higher current on/off ratio than that of Graphene FETs. In this article, we report on the preliminary results of current characteristics from the HETs which are fabricated utilizing highly doped Si collector, graphene base, and 5 nm thin $Al_2O_3$ tunnel layers between the base and Ti emitter. We have observed E-B forward currents are inherited to tunneling through $Al_2O_3$ layers, but have not noticed the Schottky barrier blocking effect on B-C forward current at the base/collector interface. At the common-emitter configuration, under a constant $V_{BE}$ between 0~1.2V, $I_C$ has increased linearly with $V_{CE}$ for $V_{CE}$ < $V_{BE}$ indicating the saturation region. As the $V_{CE}$ increases further, a plateau of $I_C$ vs. $V_{CE}$ has appeared slightly at $V_{CE}{\simeq}V_{BE}$, denoting forward-active region. With further increase of $V_{CE}$, $I_C$ has kept increasing probably due to tunneling through thin Schottky barrier between B/C. Thus the current on/off ration has exhibited to be 50. To improve hot electron effects, we propose the usage of low doped Si substrate, insertion of barrier layer between B/C, or substrates with low electron affinity.

Ferromagnetism of Chalcopyrite AlGaAs2:Mn Quaternary Alloys (4원 합금 AlGaAs2:Mn의 강자성)

  • Kang, Byung-Sub
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.666-671
    • /
    • 2020
  • The electronic structure and magnetic properties of chalcopyrite (CH) AlGaAs2 with dopant Mn at 3.125 and 6.25 % concentrations are investigated using first-principles calculations. The CH AlGaAs2 alloy is a p-type semiconductor with a small band-gap. The AlGaAs2:Mn shows that the ferromagnetic (FM) state is the most energetically favorable one. The Mn-doped AlGaAs2 exhibits FM and strong half-metallic ground states.The spin polarized Al(Ga,Mn)As2 state (Al-rich system) is more stable than the (Al,Mn)GaAs2 state (Ga-rich system), which has a magnetic moment of 3.82mB/Mn. The interaction between Mn-3d and As-4p states at the Fermi level dominates the other states.The states at the Fermi level are mainlyAs-4p electrons, which mediate strong interaction between the Mn-3d and As-4p states. It is noticeable that the FM ordering of dopant Mn with high magnetic moment originates from the As(4p)-Mn(3d)-As(4p) hybridization, which is attributed to the partially unfilled As-4pbands. The high FM moment of Mn is due to the double-exchange mechanism mediated by valence-band holes.

Synthesis and Mechanism of Ni-Doped Hibonite Blue Pigments (Ni-Doped Hibonite 파란색 안료의 합성과 발색기구)

  • Kim, Gumsun;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.43-47
    • /
    • 2014
  • NiO-doped hibonite pigments were synthesized by the solid state method to get stabilized blue color pigment in both oxidation and reduction atmospheres. Optimum substitution condition with NiO for hibonite blue pigment was investigated. Experimental results were comparable to those of previous cobalt-minimization studies performed with other phosphate- or oxide-based cobalt-containing ceramic pigments (having olivine ($Co_2SiO_4$), spinel ($CoAl_2O_4$), or with co-doped willemite ($(Co,Zn)_2SiO_4$) structures). Composition was designed varying the NiO molar ratio increasing with $SnO_2$. The optimum substitution content is 0.93 mole NiO with 0.75mole $SnO_2$. The characteristics of the synthesized pigment were analyzed by XRD, Raman spectroscopy, SEM, and UV-vis. Synthesized pigment was applied to a lime-barium glaze with 10 wt% each and fired at an oxidation atmosphere of $1250^{\circ}C/1h$ and a reducing atmosphere $1240^{\circ}C/1h$. Blue color was obtained with $L^*a^*b^*$ values at 43.39, -6.78, -18.20 under a reducing atmosphere and 41.66, -6.36, -14.7 under and oxidation atmosphere, respectively.

Effect of WO3 or Ga2O3 Addition on the Phase Evolution and Properties of Y2O3-Doped AlN Ceramics (Y2O3-AlN 세라믹스의 생성상 및 물성에 미치는 WO3 및 Ga2O3의 첨가효과)

  • Shin, Hyunho;Yoon, Sang-Ok;Kim, Shin;Hwang, Injoon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2013
  • The effect of a $WO_3$ or $Ga_2O_3$ addition on the densification, phase evolution, optical reflectance, and elastic and dielectric properties of $Y_2O_3$-doped AlN ceramics sintered at $1800^{\circ}C$ for 3 h is investigated. The investigated compositions of the additives are 4.5 wt% $Y_2O_3$ (YA), 3.5 wt% $Y_2O_3$-1.0 wt% $Ga_2O_3$ (YGA), and 3.5 wt% $Y_2O_3$-1.0 wt% $WO_3$ (YWA). $YAlO_3$ and $Y_4Al_2O_9$ form as the secondary phases in all of the investigated compositions, whereas $W_2B$ appears additionally in the YWA. In the YGA, Ga is detected in the AlN grains, indicating that the dissolution of $Ga_2O_3$ into the AlN lattice occurs. The addition of $WO_3$ blackens the specimen more significantly than that of $Ga_2O_3$ does. In all of the investigated specimens, the linear shrinkage and the apparent density are above 20 percent and in the range of 3.34-3.37 $g/cm^3$, respectively. The elastic modulus, Poisson's ratio, the dielectric constant, and the dielectric loss are in the ranges of 335-368 GPa, 0.146-0.237, 8.60-8.63, $2.65-3.95{\times}10^{-3}$, respectively. The sinterability and the properties of $Y_2O_3$-doped AlN ceramics are not much altered by the addition of $WO_3$ or $Ga_2O_3$.

Properties of ZnO:Al Thin Films Deposited by RF Magnetron Sputtering with Various Base Pressure (RF Magnetron Sputtering법으로 제작한 ZnO:Al 박막의 초기 압력에 따른 특성)

  • Kim, D.K.;Kim, H.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.141-145
    • /
    • 2011
  • ZnO:Al thin films were deposited by RF magnetron sputtering with various base pressure, and their structural, optical, and electrical properties were studied. The influence of the base pressure on the ZnO:Al thin film was confirmed and a high-quality thin film was obtained by controlling the base pressure. In all Al-doped ZnO thin films, the preferred orientation of (002) plane was observed and light transmittance in visible region (400 nm~800 nm) had above 85%. With decreasing of base pressure, crystallinity, resistivity, and figure of merit were improved. The improvement of resistivity with base pressure was attributed to the change of grain size.

증착 온도를 변화시켜 DC magnetron sputter로 증착한 Ga-doped ZnO 박막의 특성

  • Park, Ji-Hyeon;Sin, Beom-Gi;Lee, Min-Jeong;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • Display 산업의 확대로 인해 광학적 특성 및 전기적 특성이 우수한 TCO (Transparent conductive oxide) 연구가 활발히 진행되고 있다. 기존에는 ITO가 대부분의 분야에서 이용되었지만 In의 경제적인 단점으로 인해 새로운 대체물로써 ZnO가 떠오르고 있다. ZnO는 전형적인 n-type 반도체이며, wide band gap 물질로써 Al, Ga, B과 같은 3 족 원소를 doping 함으로써 광학적 및 전기적 특성을 향상시킬 수 있다. 최근에는 ZnO의 이온반경과 비슷한 Ga을 도핑한 Ga-doped ZnO 박막에 대한 연구가 활발히 진행되고 있다. 이는 ZnO에 Ga을 도핑함으로써 격자결함을 최소화 시키고 carrier concentration 및 hall mobility를 향상시켜 전기전도도의 향상을 이루기 때문이다. 본 연구에서는 $Ga_2O_3$이 3wt% doping 된 ZnO rotating cylindrical target 을 DC magnetron sputtering 을 이용하여 2 kW의 파워와 70 kHz의 주파수를 고정하고, 증착 온도를 변화시켜 유리 기판 위에 Ga-doped ZnO 박막을 증착 하였다. 증착 시 온도가 Ga-doped ZnO 박막에 미치는 영향을 관찰하기 위해 박막 표면의 조성을 분석하였고, 결정성 및 전기적 특성의 변화를 통해 박막의 특성을 비교 평가하였다. Ga-doped ZnO 박막의 표면과 두께는 SEM (Scanning electron microscope) 분석을 통해 관찰하였고, XRD (X-ray diffractometer) 를 이용하여 결정학적 특성을 확인하였다. 또한 Van der Pauw 방법을 이용한 hall 측정을 통해 resistivity, carrier concentration, hall mobility를 분석하였고, UV-Vis를 이용하여 박막의 투과율을 분석하였으며, 이를 토대로 투명 전도막으로써 Ga-doped ZnO 박막의 응용 가능성을 평가하였다.

  • PDF