• 제목/요약/키워드: B-Cell

검색결과 8,568건 처리시간 0.036초

Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma

  • Junliang Ma;Yijun Luo;Yingjie Liu;Cheng Chen;Anping Chen;Lubiao Liang;Wenxiang Wang;Yongxiang Song
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.61-73
    • /
    • 2023
  • Esophageal squamous cell carcinoma (ESCC) is a kind of malignant tumor with high incidence and mortality in the digestive system. The aim of this study is to explore the function of lnc-ABCA12-3 in the development of ESCC and its unique mechanisms. RT-PCR was applied to detect gene transcription levels in tissues or cell lines like TE-1, EC9706, and HEEC cells. Western blot was conducted to identify protein expression levels of mitochondrial apoptosis and toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway. CCK-8 and EdU assays were carried out to measure cell proliferation, and cell apoptosis was examined by flow cytometry. ELISA was used for checking the changes in glycolysis-related indicators. Lnc-ABCA12-3 was highly expressed in ESCC tissues and cells, which preferred it to be a candidate target. The TE-1 and EC9706 cells proliferation and glycolysis were obviously inhibited with the downregulation of lnc-ABCA12-3, while apoptosis was promoted. TLR4 activator could largely reverse the apoptosis acceleration and relieved the proliferation and glycolysis suppression caused by lnc-ABCA12-3 downregulation. Moreover, the effect of lnc-ABCA12-3 on ESCC cells was actualized by activating the TLR4/NF-κB signaling pathway under the mediation of exosome. Taken together, the lnc-ABCA12-3 could promote the proliferation and glycolysis of ESCC, while repressing its apoptosis probably by regulating the TLR4/NF-κB signaling pathway under the mediation of exosome.

Expression of Neuregulins and Their Receptors During the Differentiation of Rat Hippocampal HiB5 Cells

  • Kwon, Hyockman
    • Animal cells and systems
    • /
    • 제5권3호
    • /
    • pp.247-251
    • /
    • 2001
  • Differentiating HiB5 cells, a rat hippocampal cell line, expressed neuregulins and showed constitutive activation of a neuregulin receptor, ErbB2, suggesting development of a neuregulin autocrine loop. RT-PCR analyses indicated that HiB5 cells produced SMDF and NDF, but not GGF, during the differentiation. None of neuregulin isoforms were detected in proliferating HiB5 cells. The neuregulins in HiBS cells, at least in part, are the $\beta$-isoforms of which the most of neuronal neuregulin isoforms are. The expression of SMDF and NDF was enhanced by PDGF and bFGF that promote cell survival and differentiation, suggesting a close relationship between the synthesis of neuregulins and the differentiation process. HiB5 cells have ErbB2 and ErbB4, but not ErbB3 receptors. Constitutive tyrosine phosphorylation of ErbB2 was detected in HiB5 cells that had not been exposed to exogenous GGF.

  • PDF

Intragenic DNA Methylation Concomitant with Repression of ATP4B and ATP4A Gene Expression in Gastric Cancer is a Potential Serum Biomarker

  • Raja, Uthandaraman Mahalinga;Gopal, Gopisetty;Rajkumar, Thangarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5563-5568
    • /
    • 2012
  • Based on our previous report on gastric cancer which documented ATP4A and ATP4B mRNA down-regulation in gastric tumors relative to normal gastric tissues, we hypothesized that epigenetic mechanisms could be responsible. ATP4A and ATP4B mRNA expression in gastric cancer cell lines AGS, SNU638 and NUGC-3 was examined using reverse transcriptase PCR (RT-PCR). AGS cells were treated with TSA or 5'-AzaDC and methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis were performed. MSP analysis was on DNA from paraffin embedded tissues sections and plasma. Expression analysis revealed downregulation of ATP4A and ATP4B genes in gastric cancer cell lines relative to normal gastric tissue, while treatment with 5'-AzaDC re-activated expression of both. Search for CpG islands in their putative promoter regions did not indicate CpG islands (CGI) but only further downstream in the bodies of the genes. Methylation specific PCR (MSP) in the exon1 of the ATP4B gene and exon7 in ATP4A indicated methylation in all the gastric cancer cell lines tested. MSP analysis in tumor tissue samples revealed methylation in the majority of tumor samples, 15/19, for ATP4B and 8/8 for ATP4A. There was concordance between ATP4B and ATP4A down-regulation and methylation status in the tumour samples tested. ATP4B methylation was detectable in cell free DNA from gastric cancer patient's plasma samples. Thus ATP4A and ATP4B down-regulation involves DNA methylation and methylated ATP4B DNA in plasma is a potential biomarker for gastric cancer.

감마선 조사가 Staphylococcal Enterotoxin B의 비장세포 증식률 및 Interleukin-2 분비능에 미치는 영향 (Effect of Gamma-Irradiation on the Cell Proliferating and Interleukin-2 Producing Activity of Mouse Splenocytes of Staphylococcal Enterotoxin B)

  • 박종흠;성낙윤;변의백;송두섭;김재경;송범석;김재훈;이주운;유영춘
    • 방사선산업학회지
    • /
    • 제7권2_3호
    • /
    • pp.161-166
    • /
    • 2013
  • The purpose of this study was to investigate the cell proliferating and interleukin-2 producing activity of staphylococcal enterotoxin B by gamma-irradiation. Staphylococcal enterotoxin B was gamma-irradiated with the various doses of 0, 2, 20 and 50 kGy. SDS-PAGE analysis showed that gamma-irradiation caused the sharp decrease of the content of staphylococcal enterotoxin B and the effect was irradiating dose-dependent. Non-irradiated staphylococcal enterotoxin B increased the cell proliferation of splenocytes isolated from female Balb/c mouse, whereas 2 kGy-irradiated toxin significantly decreased the activity. 20 and 50 kGy-irradiated staphylococcal enterotoxin B was no effect. A similar effect on the interleukin-2 production of mouse splenocytes was observed with non-irradiated and irradiated staphylococcal enterotoxin B. It was considered to be due to the decrease of the antigenicity of staphylococcal enterotoxin B by gamma-irradiation. Therefore, these results suggest that gamma-irradiation can be effective for the decrease of the antigenicity of staphylococcal enterotoxin B as superantigen.

귀전우(鬼箭羽)(Euonymus alatus(Thunb.) Sieb)가 간암세포(肝癌細胞)(Hep3B)와 자궁암세포(子宮癌細胞)(HeLa)의 성장억제(成長抑制)에 미치는 영향(影響)에 관한 연구(硏究) (Effect of Growth Inhibition in Hep3B cell and HeLa cell by treatment of Euonymus alatus(Thunb.) Sieb extracts)

  • 최달영
    • 동국한의학연구소논문집
    • /
    • 제7권2호
    • /
    • pp.155-162
    • /
    • 1999
  • 귀전우(Euonymus alatus Sieb.)가 간암, 식도암, 위암, 자궁암등의 각종 암을 치료하는 방법으로 민방에서 많이 사용하고 있다. 실제 Euonymus alatus(Thumb.) Sieb의 추출물중 Eupolyphaga simensis(ES)는 HDL-C/TC ratio와 LCATactivity를 증진시킨다. Human hepatoblastoma 세포인 Hep3B 세포의 성장억제를 유도하는 factor로는 TGF-${\beta}$, Insulin 등으로 알려져 있다. 따라서 귀전우는 간에 있어 당 대사에 관여하는 plasma HDL3-C level은 낮게 유지함으로써 간에서 지방간 이행을 억제 하여 간에서의 암 발생을 억제하는 효과를 보인다. 실험에서 귀전우가 자궁암세포보다도 간암세포에 보다 높은 세포독성을 보임으로써 여러종류의 암에 모두 적용하기는 어렵다고 보여진다. 또한 귀전우가 바이러스에 의해 유도되는 간암과 hepatocellular Carcinoma 세포에서 효과가 있는지와 HCC에서 세포의 증식억제효과를 어떤 경로를 통해 이루어지는지 계속적으로 연구가 수행되어져야 될 것이다.

  • PDF

백금환(白金丸)의 경구 투여가 전기자극 스트레스를 받은 mouse의 비장에 존재하는 면역 세포 분획과 사이토카인 생성에 미치는 영향 (Effects of Baekgumhwan administration on immune-function in ICR mice stressed by electric footshock)

  • 주승균;김근우;구병수;심상민
    • 동의신경정신과학회지
    • /
    • 제13권1호
    • /
    • pp.39-52
    • /
    • 2002
  • The present experiments were designed to study the influence of Baekgumhwan on immune function of ICR mice under stress condition. Baekgumhwan was orally administered to the mice for 15days. on the 11th day the mice subjected to electric footshock for 5days(2 session a day, 11 footshocks a 31 min-session). B/T cell populations in splenocytes were studied by FACS analysis and cytokines($IFN-{\gamma}$ rand IL-10) production of the mouse splenocytes treated with PHA were studied by sandwich ELISA assay on the 15th day. The results were as follows. 1. After electric footshock, mice became sluggish and crowded to one side of the cage. Increased B/T cell populations in splenocytes were observed. These results confirm that electric footshock caused stress inducing immunological and behavioral changes in ICR mice. 2. Baekgumhwan administration without stress increase B cell populations in splenocytes, but T cell populations and cytokines($IFN-{\gamma}$ and IL-10) production of the mouse splenocytes treated with PHA maintain as similar levels as in the normal group. 3. Baekgumhwan administration with stress significantly antagonized the effect of electric footshock on behavior, increased B cell populations in splenocytes, so maintain as similar levels as in the normal group. cytokines($IFN-{\gamma}$ rand IL-10) production of the mouse splenocytes treated with PHA maintain as similar levels as in the normal group and T cell populations in splenocytes were increased as stress control.

  • PDF

Extracellular S100A4 negatively regulates osteoblast function by activating the NF-κB pathway

  • Kim, Haemin;Lee, Yong Deok;Kim, Min Kyung;Kwon, Jun-Oh;Song, Min-Kyoung;Lee, Zang Hee;Kim, Hong-Hee
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.97-102
    • /
    • 2017
  • Patients with inflammatory bone disease or cancer exhibit an increased risk of fractures and delayed bone healing. The S100A4 protein is a member of the calcium-binding S100 protein family, which is abundantly expressed in inflammatory diseases and cancers. We investigated the effects of extracellular S100A4 on osteoblasts, which are cells responsible for bone formation. Treating primary calvarial osteoblasts with recombinant S100A4 resulted in matrix mineralization reductions. The expression of osteoblast marker genes including osteocalcin and osterix was also suppressed. Interestingly, S100A4 stimulated the nuclear factor-kappaB (NF-${\kappa}B$) signaling pathway in osteoblasts. More importantly, the ex vivo organ culture of mouse calvariae with recombinant S100A4 decreased the expression levels of osteocalcin, supporting the results of our in vitro experiments. This suggests that extracellular S100A4 is important for the regulation of bone formation by activating the NF-${\kappa}B$ signaling pathway in osteoblasts.

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Activates Pro-Survival Signaling Pathways, Nuclear Factor-${\kappa}B$ and Extracellular Signal-Regulated Kinase 1/2 in Trophoblast Cell Line, JEG-3

  • Ka Hakhyun
    • Reproductive and Developmental Biology
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2005
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear $factor-{\kappa}B(NF-{\kappa}B)$ determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce $NF-{\kappa}B$ and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.

PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway

  • Hong, Seo Jin;Jung, Suhan;Jang, Ji Sun;Mo, Shenzheng;Kwon, Jun-Oh;Kim, Min Kyung;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • 제45권10호
    • /
    • pp.749-760
    • /
    • 2022
  • Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.