• 제목/요약/키워드: Azure

검색결과 86건 처리시간 0.024초

한국어 학습 챗봇 애플리케이션 설계 및 구현 (A Design and Implementation of Korean Language Learning ChatBot Application)

  • 이원주;안재민;김민규;박상우
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.93-94
    • /
    • 2023
  • 본 논문에서는 Azure 플랫폼 기반의 ChatBot을 활용한 한국어 학습 챗봇 애플리케이션을 설계하고 구현한다. C# ChatBot Server를 통해 챗봇 메뉴 버튼에 대한 네비게이션을 구현하며, Python 기반의 웹 프레임워크 Django를 활용하여 단어 퀴즈에 필요한 대화 처리를 구현한다. 단어 퀴즈를 통해 언어학습에 대한 흥미를 유발하고 학습 효율을 높일 수 있도록 구현한다.

  • PDF

영상 구성 파라미터 추출을 위한 융합 분석 알고리듬 연구 (Convergence Analysis Algorithm Study for Extracting Image Configuration Parameters)

  • 맹채정;하동환
    • 한국과학예술포럼
    • /
    • 제37권3호
    • /
    • pp.125-134
    • /
    • 2019
  • 본 연구는 영상콘텐츠 제작과정에서 배경음악 선정의 자동화를 위하여 영상의 특성을 분류, 분석할 수 있는 프로그램을 구성하였다. 연구 결과 및 내용은 다음과 같다. 영상의 특성은 '주제 범주', '감정', '픽셀 움직임 속도', '색상', '등장인물' 로 선정하며, '주제 범주'와 '감정'은 Microsoft사의 Azure Video Indexer를, '픽셀 움직임 속도'는 Optical flow, '색상'은 Image Histogram, '등장인물'은 CNN (Convolutional Neural Network)을 활용하여 데이터를 추출하였다. 이러한 본 연구의 결과는 최근 주목을 받고있는 '인터넷 1인 방송 크리에이터'들의 콘텐츠 제작과정에서 배경음악 매칭을 위한 영상 특성 분석이 이루어졌다는 점에서 의의가 있다.

A study on Natural Disaster Prediction Using Multi-Class Decision Forest

  • Eom, Tae-Hyuk;Kim, Kyung-A
    • 한국인공지능학회지
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2022
  • In this paper, a study was conducted to predict natural disasters in Afghanistan based on machine learning. Natural disasters need to be prepared not only in Korea but also in other vulnerable countries. Every year in Afghanistan, natural disasters(snow, earthquake, drought, flood) cause property and casualties. We decided to conduct research on this phenomenon because we thought that the damage would be small if we were to prepare for it. The Azure Machine Learning Studio used in the study has the advantage of being more visible and easier to use than other Machine Learning tools. Decision Forest is a model for classifying into decision tree types. Decision forest enables intuitive analysis as a model that is easy to analyze results and presents key variables and separation criteria. Also, since it is a nonparametric model, it is free to assume (normality, independence, equal dispersion) required by the statistical model. Finally, linear/non-linear relationships can be searched considering interactions between variables. Therefore, the study used decision forest. The study found that overall accuracy was 89 percent and average accuracy was 97 percent. Although the results of the experiment showed a little high accuracy, items with low natural disaster frequency were less accurate due to lack of learning. By learning and complementing more data, overall accuracy can be improved, and damage can be reduced by predicting natural disasters.

Predictiong long-term workers in the company using regression

  • SON, Ho Min;SEO, Jung Hwa
    • 한국인공지능학회지
    • /
    • 제10권1호
    • /
    • pp.15-19
    • /
    • 2022
  • This study is to understand the relationship between turnover and various conditions. Turnover refers to workers moving from one company to another, which exists in various ways and forms. Currently, a large number of workers are considering many turnover rates to satisfy their income levels, distance between work and residence, and age. In addition, they consider changing jobs a lot depending on the type of work, the decision-making ability of workers, and the level of education. The company needs to accept the conditions required by workers so that competent workers can work for a long time and predict what measures should be taken to convert them into long-term workers. The study was conducted because it was necessary to predict what conditions workers must meet in order to become long-term workers by comparing various conditions and turnover using regression and decision trees. It used Microsoft Azure machines to produce results, and it found that among the various conditions, it looked for different items for long-term work. Various methods were attempted in conducting the research, and among them, suitable algorithms adopted algorithms that classify various kinds of algorithms and derive results, and among them, two decision tree algorithms were used to derive results.

A customer credit Prediction Researched to Improve Credit Stability based on Artificial Intelligence

  • MUN, Ji-Hui;JUNG, Sang Woo
    • 한국인공지능학회지
    • /
    • 제9권1호
    • /
    • pp.21-27
    • /
    • 2021
  • In this Paper, Since the 1990s, Korea's credit card industry has steadily developed. As a result, various problems have arisen, such as careless customer information management and loans to low-credit customers. This, in turn, had a high delinquency rate across the card industry and a negative impact on the economy. Therefore, in this paper, based on Azure, we analyze and predict the delinquency and delinquency periods of credit loans according to gender, own car, property, number of children, education level, marital status, and employment status through linear regression analysis and enhanced decision tree algorithm. These predictions can consequently reduce the likelihood of reckless credit lending and issuance of credit cards, reducing the number of bad creditors and reducing the risk of banks. In addition, after classifying and dividing the customer base based on the predicted result, it can be used as a basis for reducing the risk of credit loans by developing a credit product suitable for each customer. The predicted result through Azure showed that when predicting with Linear Regression and Boosted Decision Tree algorithm, the Boosted Decision Tree algorithm made more accurate prediction. In addition, we intend to increase the accuracy of the analysis by assigning a number to each data in the future and predicting again.

Prediction of the number of public bicycle rental in Seoul using Boosted Decision Tree Regression Algorithm

  • KIM, Hyun-Jun;KIM, Hyun-Ki
    • 한국인공지능학회지
    • /
    • 제10권1호
    • /
    • pp.9-14
    • /
    • 2022
  • The demand for public bicycles operated by the Seoul Metropolitan Government is increasing every year. The size of the Seoul public bicycle project, which first started with about 5,600 units, increased to 3,7500 units as of September 2021, and the number of members is also increasing every year. However, as the size of the project grows, excessive budget spending and deficit problems are emerging for public bicycle projects, and new bicycles, rental office costs, and bicycle maintenance costs are blamed for the deficit. In this paper, the Azure Machine Learning Studio program and the Boosted Decision Tree Regression technique are used to predict the number of public bicycle rental over environmental factors and time. Predicted results it was confirmed that the demand for public bicycles was high in the season except for winter, and the demand for public bicycles was the highest at 6 p.m. In addition, in this paper compare four additional regression algorithms in addition to the Boosted Decision Tree Regression algorithm to measure algorithm performance. The results showed high accuracy in the order of the First Boosted Decision Tree Regression Algorithm (0.878802), second Decision Forest Regression (0.838232), third Poison Regression (0.62699), and fourth Linear Regression (0.618773). Based on these predictions, it is expected that more public bicycles will be placed at rental stations near public transportation to meet the growing demand for commuting hours and that more bicycles will be placed in rental stations in summer than winter and the life of bicycles can be extended in winter.

사용자 맞춤형 키오스크를 위한 얼굴 분석 기법 성능 비교 연구 (Performance Evaluation of Face Analysis Algorithms for User Specific Kiosk)

  • 이상욱;노현석;박기현;오원정;배창석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.949-951
    • /
    • 2022
  • 최근 키오스크의 사용률이 증가함에 따라 키오스크 사용의 어려움을 겪는 정보 취약계층이 존재한다. 키오스크 사용시 메뉴 선택을 키오스크 앞에서 하며, 절차 또한 복잡하다. 또한 키오스크의 높이가 고정되어 있어 휠체어를 타신분, 어린이 등 고정된 높이에 맞지 않는 사람은 사용이 어렵다. 이를 해결하기 위해 맞춤형 추천과 자동 높낮이 조절 키오스트에 대한 연구가 활발하다. 본 논문에서는 사용자 맞춤형 키오스크를 위한 얼굴 분석 기법의 성능 연구 결과를 제시하고 있다. 가장 대표적인 얼굴 분석 알고리즘들로 알려진 MS Azure 얼굴 분석 기법과 네이버 클로바 얼굴 인식 기법에 대한 비교 실험 결과 성별 인식의 경우 MS Azure 기법이 조금 우수했고 나이 분류의 경우에는 비슷한 성능을 보이는 것을 확인할 수 있었다.

3차원 보행 영상 기반 퇴행성 관절염 환자 분류 알고리즘 개발 (Developing Degenerative Arthritis Patient Classification Algorithm based on 3D Walking Video)

  • 강태호;성시열;한상혁;박동현;강성우
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.161-169
    • /
    • 2023
  • Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

[Reivew]Prediction of Cervical Cancer Risk from Taking Hormone Contraceptivese

  • Su jeong RU;Kyung-A KIM;Myung-Ae CHUNG;Min Soo KANG
    • 한국인공지능학회지
    • /
    • 제12권1호
    • /
    • pp.25-29
    • /
    • 2024
  • In this study, research was conducted to predict the probability of cervical cancer occurrence associated with the use of hormonal contraceptives. Cervical cancer is influenced by various environmental factors; however, the human papillomavirus (HPV) is detected in 99% of cases, making it the primary attributed cause. Additionally, although cervical cancer ranks 10th in overall female cancer incidence, it is nearly 100% preventable among known cancers. Early-stage cervical cancer typically presents no symptoms but can be detected early through regular screening. Therefore, routine tests, including cytology, should be conducted annually, as early detection significantly improves the chances of successful treatment. Thus, we employed artificial intelligence technology to forecast the likelihood of developing cervical cancer. We utilized the logistic regression algorithm, a predictive model, through Microsoft Azure. The classification model yielded an accuracy of 80.8%, a precision of 80.2%, a recall rate of 99.0%, and an F1 score of 88.6%. These results indicate that the use of hormonal contraceptives is associated with an increased risk of cervical cancer. Further development of the artificial intelligence program, as studied here, holds promise for reducing mortality rates attributable to cervical cancer.