본 논문에서는 Azure 플랫폼 기반의 ChatBot을 활용한 한국어 학습 챗봇 애플리케이션을 설계하고 구현한다. C# ChatBot Server를 통해 챗봇 메뉴 버튼에 대한 네비게이션을 구현하며, Python 기반의 웹 프레임워크 Django를 활용하여 단어 퀴즈에 필요한 대화 처리를 구현한다. 단어 퀴즈를 통해 언어학습에 대한 흥미를 유발하고 학습 효율을 높일 수 있도록 구현한다.
본 연구는 영상콘텐츠 제작과정에서 배경음악 선정의 자동화를 위하여 영상의 특성을 분류, 분석할 수 있는 프로그램을 구성하였다. 연구 결과 및 내용은 다음과 같다. 영상의 특성은 '주제 범주', '감정', '픽셀 움직임 속도', '색상', '등장인물' 로 선정하며, '주제 범주'와 '감정'은 Microsoft사의 Azure Video Indexer를, '픽셀 움직임 속도'는 Optical flow, '색상'은 Image Histogram, '등장인물'은 CNN (Convolutional Neural Network)을 활용하여 데이터를 추출하였다. 이러한 본 연구의 결과는 최근 주목을 받고있는 '인터넷 1인 방송 크리에이터'들의 콘텐츠 제작과정에서 배경음악 매칭을 위한 영상 특성 분석이 이루어졌다는 점에서 의의가 있다.
In this paper, a study was conducted to predict natural disasters in Afghanistan based on machine learning. Natural disasters need to be prepared not only in Korea but also in other vulnerable countries. Every year in Afghanistan, natural disasters(snow, earthquake, drought, flood) cause property and casualties. We decided to conduct research on this phenomenon because we thought that the damage would be small if we were to prepare for it. The Azure Machine Learning Studio used in the study has the advantage of being more visible and easier to use than other Machine Learning tools. Decision Forest is a model for classifying into decision tree types. Decision forest enables intuitive analysis as a model that is easy to analyze results and presents key variables and separation criteria. Also, since it is a nonparametric model, it is free to assume (normality, independence, equal dispersion) required by the statistical model. Finally, linear/non-linear relationships can be searched considering interactions between variables. Therefore, the study used decision forest. The study found that overall accuracy was 89 percent and average accuracy was 97 percent. Although the results of the experiment showed a little high accuracy, items with low natural disaster frequency were less accurate due to lack of learning. By learning and complementing more data, overall accuracy can be improved, and damage can be reduced by predicting natural disasters.
This study is to understand the relationship between turnover and various conditions. Turnover refers to workers moving from one company to another, which exists in various ways and forms. Currently, a large number of workers are considering many turnover rates to satisfy their income levels, distance between work and residence, and age. In addition, they consider changing jobs a lot depending on the type of work, the decision-making ability of workers, and the level of education. The company needs to accept the conditions required by workers so that competent workers can work for a long time and predict what measures should be taken to convert them into long-term workers. The study was conducted because it was necessary to predict what conditions workers must meet in order to become long-term workers by comparing various conditions and turnover using regression and decision trees. It used Microsoft Azure machines to produce results, and it found that among the various conditions, it looked for different items for long-term work. Various methods were attempted in conducting the research, and among them, suitable algorithms adopted algorithms that classify various kinds of algorithms and derive results, and among them, two decision tree algorithms were used to derive results.
In this Paper, Since the 1990s, Korea's credit card industry has steadily developed. As a result, various problems have arisen, such as careless customer information management and loans to low-credit customers. This, in turn, had a high delinquency rate across the card industry and a negative impact on the economy. Therefore, in this paper, based on Azure, we analyze and predict the delinquency and delinquency periods of credit loans according to gender, own car, property, number of children, education level, marital status, and employment status through linear regression analysis and enhanced decision tree algorithm. These predictions can consequently reduce the likelihood of reckless credit lending and issuance of credit cards, reducing the number of bad creditors and reducing the risk of banks. In addition, after classifying and dividing the customer base based on the predicted result, it can be used as a basis for reducing the risk of credit loans by developing a credit product suitable for each customer. The predicted result through Azure showed that when predicting with Linear Regression and Boosted Decision Tree algorithm, the Boosted Decision Tree algorithm made more accurate prediction. In addition, we intend to increase the accuracy of the analysis by assigning a number to each data in the future and predicting again.
The demand for public bicycles operated by the Seoul Metropolitan Government is increasing every year. The size of the Seoul public bicycle project, which first started with about 5,600 units, increased to 3,7500 units as of September 2021, and the number of members is also increasing every year. However, as the size of the project grows, excessive budget spending and deficit problems are emerging for public bicycle projects, and new bicycles, rental office costs, and bicycle maintenance costs are blamed for the deficit. In this paper, the Azure Machine Learning Studio program and the Boosted Decision Tree Regression technique are used to predict the number of public bicycle rental over environmental factors and time. Predicted results it was confirmed that the demand for public bicycles was high in the season except for winter, and the demand for public bicycles was the highest at 6 p.m. In addition, in this paper compare four additional regression algorithms in addition to the Boosted Decision Tree Regression algorithm to measure algorithm performance. The results showed high accuracy in the order of the First Boosted Decision Tree Regression Algorithm (0.878802), second Decision Forest Regression (0.838232), third Poison Regression (0.62699), and fourth Linear Regression (0.618773). Based on these predictions, it is expected that more public bicycles will be placed at rental stations near public transportation to meet the growing demand for commuting hours and that more bicycles will be placed in rental stations in summer than winter and the life of bicycles can be extended in winter.
최근 키오스크의 사용률이 증가함에 따라 키오스크 사용의 어려움을 겪는 정보 취약계층이 존재한다. 키오스크 사용시 메뉴 선택을 키오스크 앞에서 하며, 절차 또한 복잡하다. 또한 키오스크의 높이가 고정되어 있어 휠체어를 타신분, 어린이 등 고정된 높이에 맞지 않는 사람은 사용이 어렵다. 이를 해결하기 위해 맞춤형 추천과 자동 높낮이 조절 키오스트에 대한 연구가 활발하다. 본 논문에서는 사용자 맞춤형 키오스크를 위한 얼굴 분석 기법의 성능 연구 결과를 제시하고 있다. 가장 대표적인 얼굴 분석 알고리즘들로 알려진 MS Azure 얼굴 분석 기법과 네이버 클로바 얼굴 인식 기법에 대한 비교 실험 결과 성별 인식의 경우 MS Azure 기법이 조금 우수했고 나이 분류의 경우에는 비슷한 성능을 보이는 것을 확인할 수 있었다.
Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.
International Journal of Computer Science & Network Security
/
제23권10호
/
pp.89-96
/
2023
Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.
Su jeong RU;Kyung-A KIM;Myung-Ae CHUNG;Min Soo KANG
한국인공지능학회지
/
제12권1호
/
pp.25-29
/
2024
In this study, research was conducted to predict the probability of cervical cancer occurrence associated with the use of hormonal contraceptives. Cervical cancer is influenced by various environmental factors; however, the human papillomavirus (HPV) is detected in 99% of cases, making it the primary attributed cause. Additionally, although cervical cancer ranks 10th in overall female cancer incidence, it is nearly 100% preventable among known cancers. Early-stage cervical cancer typically presents no symptoms but can be detected early through regular screening. Therefore, routine tests, including cytology, should be conducted annually, as early detection significantly improves the chances of successful treatment. Thus, we employed artificial intelligence technology to forecast the likelihood of developing cervical cancer. We utilized the logistic regression algorithm, a predictive model, through Microsoft Azure. The classification model yielded an accuracy of 80.8%, a precision of 80.2%, a recall rate of 99.0%, and an F1 score of 88.6%. These results indicate that the use of hormonal contraceptives is associated with an increased risk of cervical cancer. Further development of the artificial intelligence program, as studied here, holds promise for reducing mortality rates attributable to cervical cancer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.