• Title/Summary/Keyword: Az

Search Result 665, Processing Time 0.022 seconds

Age-hardening Behavior and Mechanical Properties of Cast AZ91-0.3Ca-0.2Y Alloy (AZ91-0.3Ca-0.2Y 마그네슘 합금 주조재의 시효경화 거동 및 기계적 특성)

  • H. J. Kim;J. H. Bae;Y. M. Kim;S. H. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • In this study, the age-hardening behavior and tensile properties of a cast AZ91-0.3Ca-0.2Y (SEN9) alloy are investigated and compared with those of a commercial AZ91 alloy. Even after homogenization heat treatment, the SEN9 alloy contains numerous undissolved secondary phases, Al8Mn4Y, Al2Y, and Al2Ca, which results in a higher hardness value than the homogenized AZ91 alloy. Under aging condition at 200 ℃, both the AZ91 and SEN9 alloys exhibit the same peak-aging time of 8 h, but the peak hardness of the latter (86.8 Hv) is higher than that of the former (83.9 Hv). The precipitation behavior of Mg17Al12 phase during aging significantly differs in the two alloys. In the AZ91 alloy, the area fraction of Mg17Al12 discontinuous precipitates (DPs) increases up to ~50% as the aging time increases. In contrast, in the SEN9 alloy, the formation and growth of DPs during aging are substantially suppressed by the Ca- or Y-containing particles, which leads to the formation of only a small amount of DPs with an area fraction of ~4% after peak aging. Moreover, the size and interparticle spacing of Mg17Al12 precipitates of the peak-aged SEN9 alloy are smaller than those of the peak-aged AZ91 alloy. The homogenized AZ91 alloy exhibits a higher tensile strength than the homogenized SEN9 alloy due to the finer grains of the former. However, the peak-aged SEN9 alloy has a higher tensile elongation than the peak-aged AZ91 alloy due to the smaller amount of brittle DPs in the former.

Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험)

  • Choi, C.S.;Lee, H.S.;Kim, H.J.;Lee, K.T.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.289-293
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

  • PDF

RI OBSERVATIONS AND PHOTOMETRIC STUDY OF AZ CAS (AZ Cas의 RI 관측과 측광학적 연구)

  • 이용삼;김동우
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.175-184
    • /
    • 1994
  • RI photometric observations of an extreme long period eclipsing binary star AZ Cas have been made at the Yonsei University Observatory using the 60-cm Goto reflector for three seasons from 1990 to 1993. A total of 884 observations are made for 77 nights. All the data are standardized and determined the magnitudes and colors of AZ Cas. No significant light variation at the outside eclipse phase between $0.^p54$$0.^p87$. RI and color curves of AZ Cas are presented.

  • PDF

Effect of Deformation on Dynamic Recrystallization of an AZ31 Mg alloy (AZ31 합금의 동적 재결정에 미치는 변형 조건의 영향)

  • Kwon, Yong-Nam;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.59-62
    • /
    • 2006
  • Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. The deformation behavior of an AZ31 Mg alloy at the elevated temperature was examined firstly to find out the optimum plastic forming range in terms of temperature and strain rate. During high temperature deformation, AZ31 alloy is usually undergone the dynamic recrystallization which influence the deformation behavior in turn. In the present study, the effect of deformation on dynamic recrystallization of an AZ31 alloy was investigated to clarify the relation between the deformation and recrystallization. In an AZ31 alloy system, the dynamic recrystallization was found to occur continuously. Recrystallized grain size was dependent on the stress level.

  • PDF

The Evaluation of Weldability for Different Manufactured Mg Alloys in FSW (Mg 합금의 제조 방법에 의한 FSW 접합성 평가)

  • 노중석;김홍주;장웅성;방국수
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.256-258
    • /
    • 2003
  • Hot-rolled and Extruded plates of AZ type magnesium alloys were successfully joined by friction stir welding(FSW). AZ31B-H24 and AZ61 plates with the thickness of 4mm were used, and the microstructural development in the stir zone were investigated using optical and scanning electron microscopes. The grain size of base metal and stir zone were investigated using the line-intersecter method. Hardness of the stir zone was remarkably increased due to very fine recrystallized grain structure both in AZ3l and AZ6l alloys. Tensile strengths of the FS welded Mg alloys AZ31 and AZ61 were strongly affected by formation of the intermetallic compounds, ${\beta}$-Al$\sub$12/Mg$\sub$17/.

  • PDF

Galvanic Corrosion of AZ31 Mg Alloy Contacting with Copper

  • Phuong, Nguyen Van;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.151.1-151.1
    • /
    • 2017
  • This work studied the corrosion behavior of AZ31 Mg alloy galvanically coupled with Cu during immersion in 0.1 and 0.5 M NaCl solutions by in-situ observation and galvanic corrosion current measurement using a zero resistance ammeter. The corrosion behavior of AZ31 Mg alloy was also studied by salt spray test. The average galvanic corrosion density during 2 h immersion in 0.1 NaCl solution was found to decrease as an exponential function with increasing the surface area ratios between AZ31:Cu or with increasing the distance between AZ31 and Cu. The corrosion of electrodeposited Cu on AZ31 Mg alloy was concentrated at the area next to Cu (about 5 mm for immersion test and 2 mm for salt spray test) and pitting corrosion was accelerated at the area beyond the severely corroded area by the galvanic coupling effect.

  • PDF

Cavitation Behavior of AZ31 Sheet during Gas Blow Forming (AZ31 합금의 부풀림 성형시 공공의 거동)

  • Kim, S.H.;Kang, N.H.;Kwon, Y.N.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.601-610
    • /
    • 2011
  • Based on the facts that AZ31 magnesium alloy can be blow formed just like superplastic aluminum alloys and that most superplastic alloys fail by cavitation, the present study was undertaken to investigate the cavitation behavior of a fine-grained AZ31 sheet during blow forming at the elevated temperature. Other points of interest included the much lower strain rate and temperature dependencies of the magnesium alloy compared with conventional superplastic alloys. It was also aimed to find if cavitation in the AZ31 alloy can be suppressed by hydrostatic pressure, as is the case in most superplastic alloys. Interestingly, the application of hydrostatic pressure did not increase the blow formability of AZ31 sheet, even though it reduced the degree of cavitation. A possible reason for this behavior is discussed.

Microstructure and mechanical properties of Nd:YAG Laser welded AZ31-H24 Magnesium alloy using AZ61 filler metal (AZ61 filler wire를 사용하여 Nd:YAG Laser 용접한 AZ31-H24합금의 미세조직과 기계적 특성)

  • Ryu, Chung-Seon;Lee, Mok-Yeong;Bang, Guk-Su;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.322-324
    • /
    • 2007
  • Nd:YAG laser welding of AZ31B-H24 magnesium alloy was carried out using AZ61 filler wire(Mg-6wt%Al-1wt%Zn). Microstructure and mechanical properties of welded joint were examined by optical microscopy, scanning electronic microscopy(SEM), energy dispersive spectroscopy(EDS), electron probe micro analyzer(EPMA) and victors hardness, tensile test at the room and elevated temperature. Test results indicate that the specimens welded with AZ61 filler wire have better tensile strength, elongation and victors hardness at room temperature than those of welded without filler wire. However tensile strength are similar but elongation are quite different at elevated temperature.

  • PDF

Study on the Mechanical Properties of Laser Welded AZ31 Magnesium Alloy (AZ31 마그네슘 합금 레이저 용접부의 기계적 성질에 관한 연구)

  • Lee, M.Y.;Jeong, B.H.;Jeong, S.M.;Park, H.J.
    • Laser Solutions
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2006
  • This study aimed to investigate the change of mechanical properties with the rolling direction and shielding condition during laser welding of AZ31 magnesium alloy. AZ31 magnesium alloy sheets of 1mm thickness were welded using a continuous wave Nd:YAG laser with and without Ar shielding gas. The effect of Ar shielding gas and rolling direction on the mechanical properties were investigated using Vickers hardness, transverse-weld tensile. Porosity in the weld metals was investigated using an optical microscope. The experimental results showed that mechanical properties of AZ31 magnesium alloy laser welds were upgraded compared to those of base metal. Mechanical properties of AZ31 magnesium alloy laser welds were not substantially changed when Ar shielding gas was supplied.

  • PDF

Acid Treatment on AZ31B Magnesium Alloy (AZ31B 마그네슘 합금의 산세 거동)

  • Kim, Hye-Jeong;Park, Yeong-Hui;Seo, Jang-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.18-18
    • /
    • 2012
  • 마그네슘 합금의 화성처리는 주로 탈지-산세-디스머트-화성처리의 4단계를 거쳐 진행되는 것으로 알려져 있다. 즉, 마그네슘 합금은 공기 중에서 자연 산화막이 쉽게 생성되며 이때 생성된 산화막을 제거하기 위한 산세 공정이 필수적이다. 본 연구에서는 AZ91D 마그네슘 주조재에 주로 사용되어 왔던 다양한 산 종류에 따른 AZ31B 마그네슘 판재의 산 에칭 후의 표면 상태 및 부식 거동을 관찰하였다. 따라서 AZ31B에 적합한 산 종류를 선별하고 그에 따른 표면 거동에 대한 논의를 통하여 마그네슘 합금의 표면에 대한 이해를 높이고자 한다.

  • PDF