• Title/Summary/Keyword: Axisymmetric flow

Search Result 488, Processing Time 0.023 seconds

A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet (부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.514-519
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF

A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet (부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.562-567
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF

Forming Process Design of Fuel Injector Housing by Response Surface Method (반응표면분석법을 이용한 연료분사하우징의 성형공정설계)

  • Park K. H.;Yeo H. T.;Hur K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.311-314
    • /
    • 2004
  • The housing of the fuel injector supports the rod, the niddle valve and the solenoid. Based on the procedure of process design, in this paper, the forming operation is designed by the rigid-plastic finite element method. The metal flow during the forming of the fuel injector housing is axisymmetric until the final forming process. The response surface method has been performed to reduce the under-fill and the maximum effective strain. From the results of RSM, the second order regression model of equation is calculated by the least square method and used to determine the optimal values of design variables by simultaneously considering the responses. It is noted that upper under-fill is affected by the design variables of the $2^{nd}$ forming process and lower under-fill is affected by the design variables of the 1st forming process.

  • PDF

Numerical Analysis for Linear and Nonlinear Attenuation Characteristics of Exhaust Silencer Systems (배기 소음기의 선형 및 비선형 감쇄 특성에 대한 수치해석)

  • 김종태;김용모;맹주성;류명석;구영곤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.179-189
    • /
    • 1996
  • An unstructured grid finite-volume method has been applied to predict the linear and nonlinear attenuation characteristics of the expansion chamber silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically complex flow regions associated with the actual silencers, the unstructured mesh algorithm in context with the node-centered finite volume method has been employed. The present numerical model has been validated by comparison with the analytical solutions and the experimental data for the acoustic field of the concentric expansion chamber with and without pulsating flows, as well as the axisymmetric blast flowfield with open end. Effects of the chamber geometry on the nonlinear wave attenuation characteristics is discussed in detail.

  • PDF

An Evaluation of a Direct Numerical Simulation for Counterflow Diffusion Flames (대향류 확산화염에 대한 직접수치모사의 검증)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.74-81
    • /
    • 2001
  • A direct numerical simulation (DNS) was applied to nonpremixed counter-flow diffusion flames between oxidizer and fuel ducts. The objective of this study is to evaluate the numerical method for simulation of axisymmetric counterflow diffusion flames. Effects of computational domain size and grid size were scrutinized, and then the method was applied to air-methane diffusion flames. The results at zero gravity conditions were in good agreement with those obtained by the one-dimension flame code OPPDIF. It was confirmed thai the numerical method is applicable to the diffusion flames at the normal gravity conditions since the results clearly showed the effects of buoyancy and velocity ratio.

  • PDF

KSLV-I Plume Analysis Part III for the launch pad flame deflector performance (발사대 화염유도로 해석을 위한 KSLV-I 플룸 해석 3)

  • Hwang, Do-Keun;Nam, Jung-Won;Kim, Seong-Lyong;Kang, Sun-Il;Kim, Dae-Rae;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.375-378
    • /
    • 2010
  • Hot and high speed plume exhausted during KSLV-I flight test is cooled down by an amount of water ejected from 'gas deflector cooling system' of launch complex to reduce the effects on the launch vehicle and launch complex. In this study, simplified axisymmetric computational calculation with 2-phase is carried out to analysis the water injection effects on flow field.

  • PDF

A Study on Temperature Distribution and Bead Geometry in GMA Welding (GMA 용접에 온도분포와 비드형상에 관한 연구)

  • 김일수;박창언;송창재;정영재;김동규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.111-116
    • /
    • 1999
  • Over the last few years, there has been a growing interest in quantitative representation of heat transfer and fluid flow phenomena in weld pools in order to relate the processing conditions to the quality of the weldment produced and to use this information for the optimization and robotization of the welding process. Normally, a theoretical model offers a powerful alternative to estimate the important input parameters and to calculate the effects of varying any of parameters. To solve this problem, a transient 2D(two-dimensional) heat conduction and a transient 2D axisymmetric heat and fluid model were developed for determining weld bead geometry and temperature distribution for the GMA(Gas Metal Arc) welding process. The equation was solved using a general thermofluid-mechanics computer program, PHOENICS code, which is based on the SIMPLE algorithm. The simulation results showed that the calculated bead geometry from two developed models reasonably agree with the experiment result.

  • PDF

Numerical Study of effects on micro-pressure wave reduction by a hood on a narrow tunnel (후드를 이용한 협소 터널 미기압파 감소 효과에 대한 수치적 연구)

  • Yun Su-Hwan;Kim Byung-Yeol;Ku Yo-Cheon;Lee Dong-ho;Kwon Hyeok-Bin;Ko Tae-hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.872-877
    • /
    • 2005
  • The train entry into a tunnel generates a strong compression wave in the tunnel. The high amplitude of compression wave causes high pressure gradients that are responsible for both the aural discomfort of passengers and the impulsive acoustical wave called the miro-pressure wave. This paper provides a numerical study on effects of hood for micro'-'pressure wave reduction. An axisymmetric numerical solver, considering the cross sectional area of Korean Tilting Train eXpress, is used for a transient flow field in the tunnel. Results show that the micro-pressure wave is able to be reduced by a hood. In this results, the maximum reduction of micro--pressure wave is shown at 2L(length), 1.35D(diameter) hood around $56\%$ against the non-hood case.

  • PDF

Prediction of Effective Wake Considering Propeller-Shear-Flow Interaction (선미후류-프로펠러 상호작용을 고려한 유효반류 추정법)

  • Chang-Sup,Lee;Jin-Tae,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.1-12
    • /
    • 1990
  • Interactions between a propeller and vortex system contained in a ship stern flow is treated theoretically. A new formulation to determine the effective velocity distributions is developed, which may be immediately applicable to the design and analysis of compound propulsors under the influence of severe vortical cross-flows around ship stern. An axisymmetric shear flow is represented by a system of ring vortices and the axial variation of the stream lines due to the action of propeller is represented by a cubic function. The strengths of ring vortices, which are varying along the stream lines, are determined by the conservation of angular momentum. Two simplified effective velocity models are proposed to confirm the theory. Sample calculations using the simplified models are made to compare with the results by other investigators.

  • PDF

Numerical Analysis of Mold Deformation Including Plastic Melt Flow During Injection Molding (플라스틱 유동을 고려한 사출성형 충전공정 중 금형의 변형 해석)

  • Jung, Joon Tae;Lee, Bong-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.719-725
    • /
    • 2014
  • In the present study, a numerical analysis of an injection molding process was conducted for predicting the mold deformation considering non-Newtonian flow, heat transfer, and structural behavior. The accurate prediction of mold deformation during the filling stage is important to successfully design and manufacture a precision injection mold. While the local mold deformation can be caused by various factors, a pressure induced by the polymer melt is considered to be one of the most significant ones. In this regard, the numerical simulation considering both the melt filling and the mold deformation was carried out. A mold core for a 2D axisymmetric center-gated disk was used for the demonstration of the present study. The flow behavior inside the mold cavity and temperature distribution were analyzed along with the core displacement. Also, a Taguchi method was employed to investigate the influence of the relevant parameters including flow velocity, mold core temperature, and melt temperature.