• Title/Summary/Keyword: Axial-centrifugal Compressor

Search Result 18, Processing Time 0.027 seconds

Preliminary Aerodynamic Design of 13:1 Pressure Ratio Axial-Centrifugal Compressor (13:1의 압축비를 갖는 축류-원심형 압축기의 기본 공력설계)

  • 김원철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Preliminary aerodynamic design of a compressor is carried out to meet the design requirements which are pressure ratio of 13, air mass flow rate of 4 ㎏/s and rotational speed of 45,000 rpm. The compressor type is chosen as an axial-centrifugal compressor from the design requirements which is suitable for a medium power class turboprop or turboshaft engine. Its overall isentropic efficiency is estimated to be 0.796 and its surge margin to be 20% exceeding the design requirement. This paper summarizes the aerodynamic design details including the design procedures and the results of the axial -centrifugal compressor.

Effects of Asymmetric Tip Clearance on Centrifugal Compressor Flow (비대칭 팁간극이 원심압축기의 유동에 미치는 영향)

  • Yoon, Yong-Sang;Song, Seung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.533-541
    • /
    • 2005
  • Compared to axial compressors, an analytical model capable of analyzing the flow in centrifugal compressor lacks because of the difficulty in governing equations for radial duct. Therefore, this paper presents a new model to predict flow field in a centrifugal compressor with a sinusoidal asymmetric tip clearance. To predict the 2 dimensional flow in the inlet and exit of the centrifugal compressor, the two flow fields are connected with compressor characteristic based on Moore-Greitzer model. Contrary to axial compressors, the nonuniformity of impeller exit pressure in centrifugal compressor decreases as flow coefficient decreases. In addition, that is sensitive to the slope of pressure rise by eccentricity. The maximum velocity exists right before the maximum tip clearance.

  • PDF

Study of the Flow in Centrifugal Compressor

  • Xu, Cheng;Amano, Ryoichi Samuel
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.260-270
    • /
    • 2010
  • Reducing the losses of the tip clearance flow is one of the keys in an unshrouded centrifugal compressor design and development because tip clearances are large in relation to the span of the blades and also centrifugal compressors produce a sufficiently large pressure rise in single stage. This problem is more acute for a low flow high-pressure ratio impeller design. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range low flow coefficient centrifugal compressor is a great challenge. This paper describes a recent development of high efficiency and wide surge margin low flow coefficient centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in the centrifugal compressor design. The compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A patented three-dimensional low solidity diffuser design method is used and applied to this design. The compressor test results demonstrated to be successful to extend the low solidity diffusers to high-pressure ratio compressor. The compressor stage performance showed the total to static efficiency of the compressor being about 85% and stability range over 35%. The test results are in good agreement with the design.

CFD analysis of the Disk Friction Loss on the Centrifugal Compressor Impeller (원심 압축기의 임펠러 원판 마찰 손실에 대한 CFD 해석)

  • Kim, Hyun-Yop;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.596-604
    • /
    • 2011
  • To improve the total efficiency of centrifugal compressor, it is necessary to reduce the disk friction loss, which is defined as the power loss. In this study, the disk friction loss due to the axial clearance and the surface roughness effect is analyzed and proposed the new empirical equation for the reduction of the disk friction loss. The rotating reference frame technique and the 2-equation k-${\omega}$ SST model using commercial CFD code FLUENT is used for the steady-state analysis of the centrifugal compressor impeller. According to CFD results, the disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. For the minimization of the disk friction loss on the centrifugal compressor impeller, the magnitude of the axial clearance should be designed to the same size compare with theoretical boundary layer thickness and the surface roughness should be minimized.

Numerical Calculation of the Swirling Flow in a Centrifugal Compressor Volute (원심압축기 벌류트 내부의 스월 유동에 관한 수치해석)

  • Seong, Seon-Mo;Kang, Shin-Hyoung;Cho, Kyung-Seok;Kim, Woo-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2603-2608
    • /
    • 2007
  • Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has axial diffuser after radial diffuser because of the shape of inlet duct and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue. The calculation results show circumferential variations of the swirl and through flow velocity and pressure distribution. The mechanism deciding flow structure is explained by considering the force balance in volute cross section. And static pressure recovery and total pressure loss are estimated from the calculated results and compared with Japikse model.

  • PDF

Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows (텐덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측)

  • Noh, Jun-Gu;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.469-475
    • /
    • 2003
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed differently according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical. The numerical results agree with the measured data in respect of their tendency. It turned out that 0% of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for 75% case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

  • PDF

Application of Generalized Experimental Data Correlation in Centrifugal Compressor Design (원시험 데이터 일반화를 적용한 원심압축기 설계)

  • Cho, Gyu-Sik;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung;Mileshin, Victor I.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.38-43
    • /
    • 2000
  • Recently, KARI(Korea Aerospace Research Institute, Korea) and CIAM(Central Institute of Aviation Motors, Russia) have made an effort in developing a centrifugal compressor for a small gas turbine engine as part of a collaboration program. This compressor has been designed as a sub-component for an axial-centrifugal compression system for a small turbo-shaft engine aiming adiabatic efficiency higher than 0.81. The geometrical design requirement imposes restrictions to have high inlet hub-to-tip ratio and inlet swirl flow. In this study, the compressor has been designed using the generalized experimental data established from those compressors having pressure ratio of 3.7 to 5. From this generalized empirical correlation, desirable values of design parameters could be obtained. Subsequently, quasi-3D and 3D viscous flow analyses have been performed to ensure the adopted methodology. It is expected that the centrifugal compressor provides total pressure ratio of 4.89, corrected mass flow-rate of 1.64kg/sec, and adiabatic efficiency of 0.815 with inlet hub-to-tip ratio of 0.641. These relatively high total pressure ratio and inlet hub-to-tip ratio are the main distinctive features in this design. Besides, one of the main features of this centrifugal compressor is the adoption of a double-row bladed diffuser to effectively decelerate the transonic flow leaving the impeller. The compressor has been manufactured and will be tested in the near future.

  • PDF

Experimental Study on the Effect of Tip Clearance of a Centrifugal Compressor (팁 간극 영향으로 인한 원심 압축기 성능특성 시험연구)

  • Cha, Bongjun;Lim, Byungjun;Yang, Sooseok;Lee, Daesung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.30-37
    • /
    • 2001
  • The experimental study on the effect of axial clearance between the tip of impeller blades and stationary shroud has been performed. The investigated compressor, which is a part of a small auxiliary power unit engine, consists of a curved inlet, a centrifugal impeller, a channel diffuser and a plenum chamber. It was designed for a total pressure ratio of 4.3 and an efficiency of $77\%$ at design speed of 60,000 rpm. The experiments are carried out in an open-loop centrifugal compressor test rig driven by a turbine. For the four different clearance ratios Cr(clearance/impeller tip width) of 6.25, 10.93, 15.60 and 20.30 percent, the overall performance data are obtained at $97\%,\;90\%$ and $80\%$ of the design speed. The results show the overall pressure ratio decrease of $7.7\%$ and the efficiency loss of $8.7\%$ across the variation of clearance ratio near the design speed. It also indicates that the influence of tip clearance became weaker as the flow rate is reduced and the stable operating range is not significantly influenced by the change of clearance ratio.

  • PDF

Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows (탠덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측)

  • Noh, Jun-Gu;Kim, Jin-han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.27-34
    • /
    • 2004
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed difference according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical result. The numerical results agree with the measured data in respect of their tendency. It turned out that $0\%$ of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for $75\%$ case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

CFD Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud of Turbomachinery

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.233-234
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark lPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF