• 제목/요약/키워드: Axial-Flow Fans

검색결과 67건 처리시간 0.022초

Optimal Design and Die Manufacturing of an Axial Fan for Cooling Towers (냉각탑용 축류팬 설계 및 금형제작의 자동화)

  • Kang, Jae-Gwan;Lee, Hak-Sun;Oh, Kun-Je;Jung, Jong-Youn
    • IE interfaces
    • /
    • 제13권4호
    • /
    • pp.717-724
    • /
    • 2000
  • In this paper, an integrated system of optimal design, performance evaluation, and die design and manufacturing of axial fans for cooling tower is presented. The design and performance evaluation are developed based on three dimensional flow analysis so as to ensure low noise and high efficiency. The methodologies are implemented on computer as a GUI system including 3-D surface modeling and 2-D drawing file output modules. The CAD/CAM system is engaged to design the die and generate NC tool path, but the processes are also automated and integrated into the system by means of a part program coded from the design data. It is shown that the newly developed fans have superior performance and shortened lead-time compared to the existing dead-copied fans.

  • PDF

Stall and Counter-measure for Large Size Axial-Flow Fan (대형축류팬의 실속과 대책)

  • Shim, Eui-Bo
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.70-77
    • /
    • 1998
  • The rise in pressure across the impeller blade of an axial flow fan depends on the angle of attack. At a low back pressure, the air volume will be large and the angle of attack is small. The gradual increase of the back pressure approached stall zone which is not stationary but travels blade to blade passage. In consequence, a region occurs around these blades with large vibration in the flow. To avoid these stall operation, the stall detector in the axial flow fans has been designed to detect stalling condition with a manometer or differential pressure switch by electric mechanism.

  • PDF

Design of automotive engine cooling fan and study on noise reduction through modification of system (자동차용 냉각팬의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이덕주;이재영;이덕호;신동수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.196-201
    • /
    • 2003
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore, the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, experimental study on the fan and system was carried out and brought a successful result of performance and noise from a designed fan. And through the modification of the fan system, the fan produced more flow rate and became less noisy.

  • PDF

An Automated Design and 3-D Modeling System of Axial Fans and a Boss (냉각탑용 축류팬 및 보스 설계를 위한 3차원 자동 모델링)

  • 강재관;이광일;김원일;이윤경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제12권1호
    • /
    • pp.50-57
    • /
    • 2003
  • In this paper, an automated design and 3-D modeling system of an axial fan and a boss for cooling towers was developed. API and parametric design Provided by a commercial solid-modeler are engaged to automate modeling process. Design data of the boss are assumed to be given by a user with design experiences while the fan from the fan design program using three-dimensional flow analysis. An algorithm avoiding the interferences between fans and a boss is developed. The design data are registered on the database not only to remove duplicate design but also to transfer the data to ERP system.

Low Noise Techique of Axial Fan in Heavy Equipments (중장비 축류홴 저소음화 기법)

  • Chung, Ki-Hoon;Choi, Han-Lim;Kim, Young-Jae;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.388-395
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model, which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics, has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The ideas of low noise technique are obtained from Blade-Momentum Methods. In this paper, the discussion is confined to the performance and discrete noise of axial fan in heavy equipments.

  • PDF

Development of a Fan Simulator Using Supercomputer (슈퍼컴퓨터를 활용한 팬 시뮬레이터 개발)

  • Kim, Myung-Il;Kim, Seung-Hae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제21권5호
    • /
    • pp.805-813
    • /
    • 2012
  • A fan is the most common air flow machinery and is being used in various different industries such as for heavy machinery, home appliances and automobile. An axial fan has blades that force air to move parallel to the shaft about which the blades rotate. This type of fan is used in a wide variety of applications, ranging from small cooling fans for electronics to the giant fans used in wind tunnels. An axial fan generating large air volume used to cool equipments, but is less efficient. A sirocco fan is a efficient device for moving air by centrifugal force and can generate high pressure. Fans that affect the performance and noise of a product are important components. It is also a time and budget consuming equipment to develop a fan through physical experiments. In order to overcome this problem, we have designed and developed a fan simulator for axial and sirocco fan's fluid analysis using supercomputer. Performance and noise prediction based on datamining without numerical analyses is also developed for the conceptual design of a fan.

A Computerized Design System of the Axial Fan Considering Performance and Noise Characteristics (성능 및 소음특성을 고려한 축류 팬 설계의 전산 체계)

  • Lee, Chan;Kil, Hyun-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • 제13권2호
    • /
    • pp.48-53
    • /
    • 2010
  • A computerized design system of axial fan is developed for constructing 3-D blade geometry and predicting both aerodynamic performance and noise. The aerodynamic blading design of fan is conducted by blade angle distribution, camber line determination, airfoil thickness distribution and blade element stacking along spanwise distance. The internal flow and the aerodynamic performance of designed fan are predicted by the through-flow modeling technique with flow deviation and pressure loss correlations. Based on the predicted internal flow field and performance data, fan noise is predicted by two models for discrete frequency and broadband noise sources. The present predictions of the flow distribution, the performance and the noise level of actual fans are well agreed with measurement results.

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • 제7권1호
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

A Study on the Noise Reduction of Axial Flow Fan (축류형 팬의 저소음화에 관한 연구)

  • Oh, J.E.;Yi, S.J.;Lee, S.H.;Lee, D.I.;Kim, C.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제7권1호
    • /
    • pp.142-149
    • /
    • 1995
  • Axial fans are very useful cooling devices being widely used in many electric and industrial machinery. However those are often accompanying annoying noise. Many efforts have been devoted in order to reduce the fan noise. In this study, the procedure was devided into two major parts in considering effects of design parameters of axial fan concerned with noise ; the fan theory and the Fukano's fan noise study. By using the fan theory we defined stagger angle, camber angle, blade inlet and outlet angle for studying low noise fan. Then the effects of such angles on the flow rate and static pressure were investigated. By using the Fukano's fan noise theory, the relations of the chord length, the rotational speed and the number of blades vs. fan noise are investigated.

  • PDF

Analysis of Non-Uniform Inflow Fan Noise (비균일 입류에 의한 팬소음 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Yun, Young-Il;Lee, Sang-Hyeon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.106-112
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time. the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model. which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics. has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The fan noise of fan system having unsymmetric engine-room is predicted. In this paper, the discussion is confined to the performance and discrete noise of axial fan and front part of engine room in heavy equipments.

  • PDF