• Title/Summary/Keyword: Axial-Flow Fans

Search Result 67, Processing Time 0.024 seconds

A Suggested Mechanism of Significant Stall Suppression Effects by Air Separator Devices in Axial Flow Fans

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Radial-vaned air separators show a strong stall suppression effect in an axial flow fans. From a survey of existing literature on the effects and the author's data, a possible mechanism for the significant effects has been proposed here. The stall suppression is suggested to have been achieved by a combination of the following several effects; (1) suction of blade and casing boundary layers and elimination of embryos of stall, (2) separation and straightening of reversed swirling flow from the main flow, (3) induction of the fan main flow toward the casing wall and enhancement of the outward inclination of meridional streamlines across the rotor blade row, thus keeping the Euler head increase in the decrease in fan flow rate, and (4) reinforcement of axi-symmetric structure of the main flow. These phenomena have been induced and enhanced by a stable vortex-ring encasing the blade tips and the air separator. These integrated effects appear to have caused the great stall suppression effect that would have been impossible by other types of stall prevention devices. Thus the author would like to name the device "tip-vortex-ring assisted stall suppression device".

Effect of Pitch Angle and Blade Length on an Axial Flow Fan Performance (피치각과 날개 길이에 따른 축류팬의 성능)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows: The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and increase of static pressure amount increased up to a pitch angle of $30^{\circ}$ but decreased rapidly above $35^{\circ}$.

A Numerical Study on Flow through a Cross Flow Fan: Effect of Blade Shapes on Fan Performance (직교류 홴의 유동 해석: 깃 형상 변화가 성능에 미치는 영향)

  • Hur, Nahm-Keon;Kim, Wook;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.96-102
    • /
    • 1999
  • Cross flow fans are used in various applications, especially in industrial ventilation applications and in room air conditioners, due to their superior performance characteristics. Unlike radial and/or axial fans, the design of cross flow fans have been mostly based on earlier experiences and experiments. In the present study, numerical computations of flow fields through a cross flow fan used in room air conditioner are performed to investigate the detailed flow fields and to study the effect of the blade shape on performance curves to aid better design of the fan. Despite some discrepancies between the two results, it is seen from the present study that the computational results agree quite well with the qualitative experimental results. It is also shown from the present study that by having a different shape of blade, it is possible to achieve about $15\%$ increase in flow rates. The stimulating results of the present study can be used in the design of high performance cross flow fans with the use of optimal design algorithm and experimental verifications.

  • PDF

Parametric Design of Axial Fan for Air-Conditioning Unit in terms of Aerodynamic Performance and Noise Level (공조용 축류홴 설계 및 설계변수에 따른 성능과 소음비교)

  • Lee, Seung-Jin;Choi, Go-Bong;Cho, Hong-Jun;Song, Woo-Seog;Lee, Seung-Bae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.24-29
    • /
    • 2010
  • Axial fans for an air-conditioning unit are designed to equip the system with an expected flow-rate and low noise level by applying the blade design method of multi-sectioning and local camber generation. In this study, the distributions of chord length, stagger angle, and camber angle are globally and locally determined for the given specific speed, which is considered to be relatively high. The mock-up fans are observed to satisfy the aerodynamic performance and the noise level for the system simultaneously and discussed in terms of local flow patterns related to the emitted noise.

Study on Performance Prediction of Industrial Axial Flow Fan with Adjustable Pitch Blades (산업용 조정 피치형 축류송풍기의 성능예측에 관한 연구)

  • Koo, Jae-In;Kim, Chang-Soo;Chung, Jin-Teak;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.30-34
    • /
    • 2001
  • In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.

  • PDF

Study on Noise Reduction by Optimizations of In-line Duct Flow (덕트의 유로 최적화를 통한 소음저감 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Mo, Jin-Yong;Lee, Jai-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.803-808
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duel using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type) was examined to investigate the suitability for duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ},\;10^{\circ},\;15^{\circ}\;and\;20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}\;to\;20^{\circ}$. Finally, designed the shapes of D/S(Down Stream) in duct that agreed inlet angle($\delta$) of stationary blades with pitch angle($\beta$) of axial fan with centrifugal type and derived flow to duct medial, and changed the shape of motor-mount to reduce occurance of unstable vortex in tip of impeller, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

Analysis on Performance of Axial Flow Fan for Outdoor Unit of Air-conditioner: Flow Characteristics (에어컨 실외기용 축류홴의 성능에 관한 연구: 유동 특성)

  • Kim, Yong-Hwan;Jeong, Jin-Hwan;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.30-35
    • /
    • 2010
  • The aerodynamic performance of axial flow fans for outdoor unit of air-conditioner is investigated by numerical and experimental approaches in this study. The pressure drop and volumetric flow rate are compared each other in several different conditions and fan speeds. It is shown that the predicted fan performances are quite well matched with the experimental results. It is also shown that the curvature of the fan arc and hub height have significant influences on the flow distribution after hub. By the results of this study, it can be suggested that several ways to improve the aerodynamic performance of the axial flow fan can be found using the numerical analysis.

Development of an axial flow fan for a refrigerator by in-house design system (팬 설계 시스템에 의한 냉장고용 축류팬 개발)

  • 최동규;최원석;박성관
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.85-92
    • /
    • 1997
  • An axial flow fan design system has been made by integrating the self-developed programs and I-DEAS. By using the system, an axial flow fan was designed, manufactured and verified through the wind tunnel experiments in coorperation with a refrigerator appliance division. It has been shown that the optimal design without the ambiguity of the design parameters can be possible by the three-dimensional flow simulations using a self-developed CID code, FANS-3D. (Flow Analysis code using Navier Stokes aguations in Three-Dimensional curvilinear coordinates). By virtue of the fluency of the data flow, an optimally designed fan which satisfies design conditions can be selected in a short time and less cost. The manufacturing processes of a Mock-up and an injection molding die have been automated through the self-made interface programs which connnect from the start to the end. It has been shown that the newly developed fan by this system has a superior performance characteristics to an existing fan.

  • PDF

Experimental Research for Performance and Noise of Small Axial Fan

  • Ito, Takahiro;Minorikawa, Gaku;Fan, Qinyin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.136-146
    • /
    • 2009
  • Small axial fans have become widely used as cooling devices in recent years. Because of their increasing importance, studies have been conducted on ways to improve the performance and reduce the noise of such fans. In this report, a small axial fan with a diameter of 85 mm (a type popularity used in personal computer or workstation) was selected for further examination. The influence on aerodynamic performance and noise of such frame design parameters as blade tip clearance results in a decrease of discrete frequency noise and an increase of broad-spectrum noise. As for the most suitable design refinement in terms of fan efficiency, we found that the treatment of outlet corner roundness and altering spoke skew to the direction counter to that of fan rotation was effective.

A Numerical Study on the Effects of the Design Parameters upon Fan Performance and Noise (축류홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구)

  • 전완호;백승조;김창준;윤홍열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.264-269
    • /
    • 2001
  • Axial fans are widely used in household electrical appliances due to their easy usage and high flow rate for cooling capacity. At the same time, the noise generated by these fans causes one of serious problems. In order to calculate the noise of a fan, we develop the software IFD - Intranet Fans Design. With this software we can design, analysis the performance and predict the noise of fan. The prediction model, which allowed the calculation of acoustic pressure at the blade passing frequency and it's higher harmonic frequencies, has been developed by Lowson's equation. To calculate the unsteady resultant force of the blade, time-marching free-wake method is used. The objective of this study is to calculate the effects of number of blades, rotating velocity, and sweep angle on the noise of fan..

  • PDF