• Title/Summary/Keyword: Axial velocity

Search Result 751, Processing Time 0.023 seconds

An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of Elliptical Shapes from Round Billet (상계해법에 의한 원형빌렛으로부터 타원 단면을 가진제품의 압출가공의 비틀림 해석)

  • 김한봉;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.210-213
    • /
    • 1998
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by axial distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increase with the die twisting angle and the aspect ratio of product and friction condition and reduction area and show that angular velocity increases with the decreases in die length.

  • PDF

Dynamic Characteristics of External loop Air-Lift Reactor (외부 순환 공기리프트 반응기의 동특성)

  • 강귀현;김춘영정봉우
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.59-65
    • /
    • 1992
  • Hydrodynamics and mixing characteristics such as circulation time, mixing time, circulation velocity and axial dispersion coefficient were investigated using highly viscous pseudoplastic solutions of carboxymethyl cellulose(CMC) in an external circulation loop air-lift reactor with 13$\ell$ working volume. The superficial gas velocity was changed from 1.9 to 6.2cm/s and CMC concentration from 0 to 1.0wt%. The theoretical model based on the pressure balance is developed mathematically to predict liquid circulation velocity. Gas hold-up, circulation velocity and axial dispersion coefficient of liquid phase increased with increasing gas velocity and decreased slightly with increasing liquid viscosity. Mixing time and circulation time decreased with increasing gas velocity and increased with increasing liquid viscosity. Experimental data on liquid circulation velocity were in good agreement with the predicted values.

  • PDF

Numerical and Experimental Analyses of the Aerodynamic Characteristics of a Counter Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 전산 해석 및 실험)

  • Cho, Jin-Soo;Won, Yu-Phil;Lee, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.325-337
    • /
    • 2000
  • A study was done on the numerical and experimental analyses of the aerodynamic characteristics of a counter rotating axial fan. The numerical analysis uses the frequency domain panel method developed for the aerodynamic analysis of interacting rotating systems, which is based on the unsteady lifting surface panel method. Each stage of interaction involves the solution of an isolated rotor, the interaction being done through the Fourier transform of the induced velocity field. Numerical results showed good agreements with other experimental data for single and counter rotating propeller systems. And they were compared with the experimental results of the counter rotating axial fan studied in the present paper. The performance test was carried out based on the Korean Standard (KS B 6311). It was focused on the relative efficiency increase of a counter rotating system for a single rotating one, and effects of the axial distance between the front and rear rotors on overall fan performances were investigated. As a result, it was shown that the counter rotating axial fan has the efficiency 14% higher than the single rotating one at peak efficiency points.

Performance and Flow Condition of Contra-rotating Small-sized Axial Fan at Partial Flow Rate

  • Shigemitsu, Toru;Fukutomi, Junichiro;Okabe, Yuki;Iuchi, Kazuhiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.271-278
    • /
    • 2010
  • Small-sized axial fans are used as air cooler for electric equipments. But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices. Therefore, higher rotational speed design is conducted, although, it causes the deterioration of efficiency and the increase of noise. Then the adoption of contrarotating rotors for the small-sized axial fan is proposed for the improvement of performance. In the present paper, the performance curves of the contra-rotating small-sized axial fan with 100mm diameter are shown and the velocity distributions at a partial flow rate at the inlet and the outlet of each front and rear rotor are clarified with experimental results. Furthermore, the flow conditions between front and rear rotors of the contra-rotating small-sized axial fan are investigated by numerical analysis results and causes of the performance deterioration of the contra-rotating small-sized axial fan at the partial flow rate is discussed.

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF

Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving mass (이동질량을 가진 유체유동 회전 외팔 파이프의 동특성)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.308-311
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bemoulli hew theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever, pipe is more sensitive to the effect of a angular velocity.

  • PDF

Concrete Target Size Effect on Projectile Penetration (침투시험에서의 콘크리트 표적크기 영향 분석)

  • Kim, Seokbong;Yoo, Yohan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.154-159
    • /
    • 2015
  • This paper deals with the effect of concrete target size on penetration of projectiles. We investigated the penetration depth and residual velocity of projectiles using the 2-D axial symmetric model. Most analysis were conducted with 13 kg projectile (striking velocity: 456.4 m/s) and concrete target with compressive strength of 39 MPa. This paper provided penetration depth (or residual velocity) versus ratio D/d (target diameter, D and projectile diameter, d). When the bottom of concrete cylinder was constrained, penetration depth converged to limit depth more than the ratio D/d of 36. The residual velocity of projectile with thin concrete target were investigated. The residual velocity was converged to specific velocity more than the ratio D/d of 16.

An Upper Bound Analysis of the Shapes of the Dead Metal Zone and the Curving Velocity Distribution in Eccentric Plane Dies Extrusion (평다이를 사용한 편심압출가공에서의 비유동영역의 형상과 굽힘속도분포에 관한 상계해석)

  • 김진훈;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.250-253
    • /
    • 1998
  • The kinematically admissible velocity field is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric plane dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric plane dies is caused by the eccentricity of plane dies. The axial velocity distribution in the plane dies is divided in to the uniform velocity and the deviated velocity. The deviated velocity is linearly changed with the distance from the center of cross-section of the workpiece. The results show that the curvature of products and the shapes of the dead metal zone are determined by the minimization of the plastic work and that the curvature of the extruded products increases with the eccentricity.

  • PDF

The Effect of Swirl Number on the Flow Characteristics of Flat Flame Burner (선회도에 따른 평면 화염 버너의 유동특성)

  • Jang, Yeong-Jun;Jeong, Yong-Gi;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.997-1004
    • /
    • 2001
  • Burner of Flat Flame type expects the uniform flame distribution and NOx reduction. The characteristics of Flat Flame Burner become different according to swirl number in the burner throat. Experiments were focused on swirl effect by four types of swirler with different swirl numbers (0, 0.26, 0.6 and 1.24). It shows many different flow patterns according to swirl number using PIV(Particle Image Velocimetry) method. The flow of burner with swirler is recirculated by pressure difference between its center and outside. Recirculated air makes stable in flame, and reduced pollutant gas. In case of swirl number 0, main flow passes through axial direction. As swirl number increased, The backward flow develops in the center part of burner and Flow gas recirculates. This is caused by radial flow momentum becomes larger than axial flow by swirled air and the pressure at center drops against surrounding. As swirl number increases, the radial and axial velocity was confirmed to be larger than low swirl numbers. And turbulence intensity have similar pattern. The CTRZ(Central Toroidal Recirculation Zone) is shown evidently when y/D=1 and S=1.24. The boundary-layer between main flow and recirculated flow is shown that the width is seen to be decreased as swirl number increased.