• Title/Summary/Keyword: Axial motion

Search Result 426, Processing Time 0.024 seconds

Implementation of a Mobile Sensor Device Capable of Recognizing User Activities (사용자 움직임 인식이 가능한 휴대형 센서 디바이스 구현)

  • Ahn, Jin-Ho;Park, Se-Jun;Hong, Eu-Gene;Kim, Ig-Jae;Kim, Hyoung-Gon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.40-45
    • /
    • 2009
  • In this paper, we introduce a mobile-type tiny sensor device that can classify the activities of daily living based on the state-dependent motion analysis using a 3-axial accelerometer in real-time. The device consists of an accelerometer, GPS module, 32bit micro-controller for sensor data processing and activity classification, and a bluetooth module for wireless data communication. The size of device is 50*47*14(mm) and lasts about 10 hours in operation-mode and 160 hours in stand-by mode. Up to now, the device can recognize three user activities ("Upright", "Running", "Walking") based on the decision tree. This tree is constructed by the pre-learning process to activities of subjects. The accuracy rate of recognizing activities is over 90% for various subjects.

Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet (스월 충돌제트의 열전달 특성에 관한 실험적 연굴)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover (복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석)

  • Lim, In-Gyu;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.29-37
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube. The outboard main blade, flexbeam and torque tube are all assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections, which are discretized into beam finite elements. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory is used for aerodynamic computation. The finite element equations of motion for beams are obtained from Hamilton's principle. The p-k method is used to determine aeroelastic stability boundary. Numerical results are presented for selected bearingless rotor configurations based on the lay-up of laminae in the flexbeam and pitch links location. A systematic study is made to identify the importance of the stiffness coupling terms on aeroelastic stability for various fiber orientation and for different configuration.

A Study on the Stress Analysis of Oil Hydraulic Piston Pump with a Swash Plate Type (사판식 유압 피스톤 펌프의 응력해석에 관한 연구)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2424-2429
    • /
    • 2015
  • In an oil hydraulic piston pump, the cylinder block and valve plate in high speed relative sliding motion have the characteristics which should be extremely controlled for the optimization of leakage and friction losses, and pressure-resistance design of them is very important for high pressure performance. But the studies on the stress analysis of those parts have not been performed briskly. Therefore, in this paper, the stress and displacement distributions of the cylinder block and valve plate in the oil hydraulic piston pump with a swash plate type are discussed through the static stress analysis using CATIA V5. The stress and displacement of the cylinder block are more influenced by the axial pressure than by the radial pressure, and are larger by approximately 66% and 30%, respectively. The results show that a review of the material and shape of the valve plate is required.

Surface Tribology of Total Ankle Joint Replacement (인공발목관절의 표면 마모 특성)

  • Jeong, Yong-Hoon;Jung, Tae-Gon;Yang, Jae-Woong;Park, Kwang-Min;Lee, Su-Won
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.117-117
    • /
    • 2016
  • Total ankle replacement (TAR) is a visible option in the surgical treatment of degenerative or inflammatory diseases of ankle joint. it is attributed to the current TAR which has improvements in surgical technique, uncemented implant fixation and minimally constrained articulation. In the clinical result, they can show promised surgical result when compared to earlier attempts in TAR. However, TAR is still not as successful as total knee replacement (TKR) or total hip replacement (THR), it needs to be note that there are limitations in concerning of long term performance of TAR, the high failure rate still associated with wear of the PE (polyethylene) component that has related with their material property and surface roughness. The aim of this study was to introduce the tribology characteristics of total ankle joint prosthesis with one of TDR model which was fabricated to try multi-axis wear test as a region of motion in ankle joint. The wear specimen of TDR was prepared with Ti-6Al-4V alloy and UHMWPE (ultra-high molecular weight polyethylene) for tibia-talus and bearing component, respectively. A wear test was carried out using a Force 5 (AMTI, Massachusetts, US) wear simulator which can be allowed to move in three axis to flexion-extension ($+3^{\circ}{\sim}-6^{\circ}$), internal-external axial rotation (${\pm}5^{\circ}$), as well as sinusoidal compressive load (1.6 kN, R=10). All tests were performed following standard ISO 14243, wear rate was calculated with weight loss of UHMWPE bearing while the specimen has tested at certain cycles. As based on the preliminary results, wear rate of UHMWPE bearing was $7.9{\times}10^{-6}mg/cycles$ ($R^2=0.86$), calculated loss weight until $10^7cycles$ was 79 mg, respectively.

  • PDF

A Study on Ubiquitous Road for Prevention of the Overweight Vehicles (과적차량 방지를 위한 유비쿼터스도로에 관한 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • Overload vehicles operate damage to road, bridge, and then increasing in maintenance and repair cost because structures are reduced durability. The existing regulation systems have many problems and need coping measure. Therefore, this paper organized Ubiquitous sensor network system for development of intelligent auto overload vehicle regulation system about high speed vehicles, also axial load WIM sensor was selected by indoor experiment through wireless protocol. And we examined possibility U-load auto overload vehicle regulation system through experiment of the transmission and reception distance. If this system will apply to road and bridge, might be effective for economy and convenience through establishment of U-IT system. And high speed vehicle that was amalgamate IT technology and existing overload regulation problems, also tested wireless sensor for USN organization. This experiment aim to organize system interface for user through perfection man-less, wireless system of Internal/External Network from high speed WIN sensor with USN organization. Accordingly, it is necessary experimentation through Test Bed for constitution External network and application of actually regulations using WCDMA/HSDPA.

A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation

  • Bounouara, Fatima;Benrahou, Kouider Halim;Belkorissat, Ismahene;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.227-249
    • /
    • 2016
  • The objective of this work is to present a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into consideration the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces instead of rotational displacements as in available high order plate theories. The material properties are supposed to be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via Hamilton's principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale plates are investigated.

Intramedullary Screw Fixation for Clavicle Shaft Fractures: Comparison of the Anterograde versus the Retrograde Technique

  • Rhee, Yong Girl;Cho, Nam Su;Cho, Sung Whan;Song, Jong Hoon
    • Clinics in Shoulder and Elbow
    • /
    • v.19 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • Background: The purpose of this study was to investigate the difference between two nailing approaches of intramedullary screw fixation, the retrograde nailing versus the anterograde nailing, on the radiological and clinical outcomes in patients with clavicle shaft fractures. Methods: From April 2002 to August 2014, we enrolled a total of 22 patients with clavicle shaft fractures to participate in this study. Twelve patients received retrograde intramedullary nailing and 10 received anterograde nailing. The average duration of follow-up was 12 months. In all the patients, we took follow-up radiographs of the anteroposterior and the axial views to assess the postoperative radiological outcomes. We measured the visual analogue scale (VAS) score, American Shoulder and Elbow Surgeons (ASES) score, and the range of motion (ROM). Results: Clinically, we did not find a statistically significant difference in the retrograde group and the anterograde group in terms of the duration to bone union, the VAS score the ASES score and the ROMs. Radiologically, we found that the difference in the clavicle shortening of the affected arm and the unaffected arm did not show a statistically significant difference at the immediate postoperative assessment. we found that the difference in the clavicle shortening of the affected arm between the immediate postoperative and the final follow-up value did not show a statistically significant difference. Conclusions: We found that both the retrograde nailing and the anterograde nailing gave a favorable outcome for clavicle shaft fractures. Although we saw evidence of clavicle shortening after intramedullary screw fixation, this was not a factor that influenced clinical outcome.

A Biomechanical Comparison of Intralaminar C7 Screw Constructs with and without Offset Connector Used for C6-7 Cervical Spine Immobilization : A Finite Element Study

  • Qasim, Muhammad;Hong, Jae Taek;Natarajan, Raghu N.;An, Howard S.
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.331-336
    • /
    • 2013
  • Objective : The offset connector can allow medial and lateral variability and facilitate intralaminar screw incorporation into the construct. The aim of this study was to compare the biomechanical characteristics of C7 intralaminar screw constructs with and without offset connector using a three dimensional finite element model of a C6-7 cervical spine segment. Methods : Finite element models representing C7 intralaminar screw constructs with and without the offset connector were developed. Range of motion (ROM) and maximum von Mises stresses in the vertebra for the two techniques were compared under pure moments in flexion, extension, lateral bending and axial rotation. Results : ROM for intralaminar screw construct with offset connector was less than the construct without the offset connector in the three principal directions. The maximum von Misses stress was observed in the C7 vertebra around the pedicle in both constructs. Maximum von Mises stress in the construct without offset connector was found to be 12-30% higher than the corresponding stresses in the construct with offset connector in the three principal directions. Conclusion : This study demonstrated that the intralaminar screw fixation with offset connector is better than the construct without offset connector in terms of biomechanical stability. Construct with the offset connector reduces the ROM of C6-7 segment more significantly compared to the construct without the offset connector and causes lower stresses around the C7 pedicle-vertebral body complex.

Development and CFD Analysis of a New Type Pre-Swirl Duct for 176k Bulk Carrier (176k Bulk Carrier에 대한 신개념 타입의 Pre-Swirl Duct의 개발 및 CFD 해석)

  • Yoo, Gwang Yeol;Kim, Moon Chan;Shin, Yong Jin;Shin, Irok;Kim, Hyun Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.373-382
    • /
    • 2019
  • This paper shows numerical results for the estimation of the propulsor efficiency of Pre-Swirl Duct for 176k bulk carrier as well as its design method. Reynolds averaged Navier-Stokes equations have been solved and the k-epsilon model applied for the turbulent closure. The propeller rotating motion is determined using a sliding mesh technique. The design process is divided into each part of Pre-Swirl Duct, duct and Pre-Swirl Stator. The design of duct was performed first because it is located further upstream than Pre-Swirl Stator. The distribution of velocity through the duct was analyzed and applied for the design of Pre-Swirl Stator. The design variables of duct include duct angle, diameter, and chord length. Diameter, chord length, equivalent angle are considered when designing the Pre-Swirl Stator. Furthermore, a variable pitch angle stator is applied for the final model of Pre-Swirl Duct. The largest reduction rate of the delivered power in model scale is 7.6%. Streamlines, axial and tangential velocities under the condition that the Pre-Swirl Duct is installed were reviewed to verify its performance.