• 제목/요약/키워드: Axial load

검색결과 1,948건 처리시간 0.031초

풍화암 소켓 대구경말뚝의 축하중 전이거동 (Axial Load Transfer Behavior of a Large Diameter Pile socketed into weathered rock)

  • 정창규;임태경;황근배;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.390-397
    • /
    • 2002
  • In this study, static pile load tests with load transfer measurement for a pile socketed into weathered rocks were performed. Axial load transfers during static pile load test were measured and analyzed. Three large diameter piles socketed into weathered rock were behavior behaved as friction pile.

  • PDF

선단지지된 항타개단강관말뚝의 축하중전이거동 (Axial Load Transfer Behavior for Driven Open-ended End bearing Steel Pipe Pile)

  • 임태경;정성민;정창규;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.589-596
    • /
    • 2002
  • In this study, static pile load tests with load transfer measurement were accomplished in the field. Yield pile capacity (or ultimate pile capacity) determined by load-settlement-time relationship was determined and axial load transfer behavior was analyzed. In the test for the four test piles were behaved as end bearing pile but ratios of skin friction to total pile capacity were 27%∼33%.

  • PDF

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

가변진폭하중에서 다축-다점 하중 Counting method를 이용한 피로수명평가 (Fatigue life estimation using the multi-axial multi-point Load Counting method under Variable Amplitude Loading)

  • 이원석;이현우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.913-920
    • /
    • 1996
  • In this study, the counting method for multi-axial and multi-point load states was proposed. Using this counting method, the load spectrum is generated from the service load history which is measured for boom structure of excavator. Loading state for loading points of boom structure is described as a multi-dimensional state space. From this load spectrum, the stress spectrum was generated by FEM analysis using the superposition of the unit load. The cumulated damage at the severe damage point of In nm structure by the failure example is calculated by Palmgren-Miner's rule. As a result of this study, the fatigue life estimation using the multi-axial and multi-point load counting method is useful.

  • PDF

축력 및 반복 횡하중을 받는 철근 콘크리트 기둥의 변형능력에 관한 연구 (Deformation Capacity of Reinforced Concrete Columns Subjected to Axial Compression and Lateral Load Reversals)

  • 박광욱;이용택;유영찬;이원호;김성수;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.107-112
    • /
    • 1993
  • The objective of this experimental investigation is to examine the feasibility and the usefulness of the complementary crosstie in the current ACI 318-89 code for rienforced concrete columns subjected to constant axial load and lateral load reversals. Tests were conducted on1/3 scaled four columns with the length of 1.9m and the cross section of 20$\times$20 cm. The main parameters of specimens were the magnitude of axial load applied and the configuration of transverse reinforcements . From the experimental results, it can be seen that while the column subjected to lower axial load represented considerable ductility behaviors, the column subjected to higher axial load showed the brittle failure

  • PDF

Structural performance of novel SCARC column under axial and eccentric loads

  • Zhou, Chunheng;Chen, Zongping;Li, Junhua;Cai, Liping;Huang, Zhenhua
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.503-516
    • /
    • 2020
  • A novel spiral confined angle-steel reinforced concrete (SCARC) column was developed in this study. A total of 16 specimens were prepared and tested (eight of them were tested under axial loading, the other eight were tested under eccentric loading). The failure processes and load-displacement relationships of specimens under axial and eccentric loads were examined, respectively. The load-carrying capacity and ductility were evaluated by parametric analysis. A calculation approach was developed to predict the axial and eccentric load-carrying capacity of these novel columns. Results showed that the spiral reinforcement provided enough confinement in SCARC columns under axial and low eccentric loads, but was not effective in that under high eccentric loads. The axial load-carrying capacity and ductility of SCARC columns were improved significantly due to the satisfactory confinement from spirals. The outer reinforcement and other construction measures were necessary for SCARC columns to prevent premature spalling of the concrete cover. The proposed calculation approach provided a reliable prediction of the load-carrying capacity of SCARC columns.

Investigation of vibration and stability of cracked columns under axial load

  • Ghaderi, Masoud;Ghaffarzadeh, Hosein;Maleki, Vahid A.
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1181-1192
    • /
    • 2015
  • In this paper, an analytical method is proposed to study the effect of crack and axial load on vibration behavior and stability of the cracked columns. Using the local flexibility model, the crack has been simulated by a torsional spring with connecting two segments of column in crack location. By solving governing eigenvalue equation, the effects of crack parameters and axial load on the natural frequencies and buckling load as well as buckling load are investigated. The results show that the presents of crack cause to reduction in natural frequencies and buckling load whereas this reduction is affected by the location and depth of the crack. Furthermore, the tensile and compressive axial load increase and decrease the natural frequencies, respectively. In addition, as the compression load approaches to certain value, the fundamental natural frequency reaches zero and instability occurs. The accuracy of the model is validated through the experimental data reported in the literature.

S.L. 도포 및 미도포 말뚝의 축하중전이거동 (The Behavior of Axial Load Transfer for S.L. Coated Pile And Uncoated Pile)

  • 배기열;김정환;이민희;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.373-380
    • /
    • 2002
  • In this study, In order to compare the behavior of axail load transfer for S.L. coated piles and uncoated piles installed at a field test site. During static pile load tests, axial load transfer for S.L. coated piles and uncoated piles were measured.

  • PDF

Experimental and analytical investigations of CFFT columns with and without FRP bars under concentric compression

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.591-601
    • /
    • 2019
  • This research study investigates experimentally and analytically the axial compressive behaviour of Concrete Filled Fiber Reinforced Polymer Tube (CFFT) columns with and without Fiber Reinforced Polymer (FRP) bars. The experimental program comprises five circular columns of 204-206 mm outer diameter and 800-812 mm height. All columns were tested under concentric axial compressive loads. It was found that CFFT columns with and without FRP bars achieved higher peak axial compressive loads and corresponding axial deformations than conventional steel reinforced concrete (RC) column. The contribution of FRP bars was about 12.1% of the axial compressive loads carried by CFFT columns reinforced with FRP bars. Axial load-axial deformation ($P-{\delta}$) curves of CFFT columns were analytically constructed, which mapped well with the experimental $P-{\delta}$ curves. Also, an equation was proposed to predict the axial compressive load capacity of CFFT columns with and without FRP bars, which adequately considers the contributions of the circumferential confinement provided by FRP tubes and lower ultimate strength of FRP bars in compression than in tension.

Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading

  • Bahrami, Alireza;Badaruzzamana, Wan Hamidon Wan;Osmanb, Siti Aminah
    • Structural Engineering and Mechanics
    • /
    • 제39권3호
    • /
    • pp.383-398
    • /
    • 2011
  • This paper investigates the nonlinear analysis of concrete-filled steel composite columns subjected to axial loading to predict the ultimate load capacity and behaviour of the columns. Finite element software LUSAS is used to conduct the nonlinear analyses. The accuracy of the finite element modelling is verified by comparing the result with the corresponding experimental result reported by other researchers. Nonlinear analyses are done to study and develop different shapes and number of cold-formed steel sheeting stiffeners with various thicknesses of cold-formed steel sheets. Effects of the parameters on the ultimate axial load capacity and ductility of the concrete-filled steel composite columns are examined. Effects of variables such as concrete compressive strength $f_c$ and cold-formed steel sheet yield stress $f_{yp}$ on the ultimate axial load capacity of the columns are also investigated. The results are shown in the form of axial load-normalized axial shortening plots. It is concluded from the study that the ultimate axial load capacity and behaviour of the concrete-filled steel composite columns can be accurately predicted by the proposed finite element modelling. Results in this study demonstrate that the ultimate axial load capacity and ductility of the columns are affected with various thicknesses of steel sheets and different shapes and number of stiffeners. Also, compressive strength $f_c$ of the concrete and yield stress $f_{yp}$ of the cold-formed steel sheet influence the performance of the columns significantly.