• Title/Summary/Keyword: Axial force of rail

Search Result 41, Processing Time 0.028 seconds

A Study of Dynamic Behavior of Track and Train Interaction on Rail Open Gap (레일 개구부에서의 궤도-차량 상호작용에 대한 연구)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu;Cho, Sun Kyu;Han, Sang Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.345-355
    • /
    • 2007
  • During winter, the CWR (continuous welded rail) may be broken when a temperature drop below the neutral level changes the axial force, causing tensile fracture and creating a rail gap. The passage of a train on a rail with an open gap may lead to very costly derailments. In this paper, the use of a track-and-train-coupled model whose rail has an open gap is proposed for dynamic interaction analysis. Linear track and train systems were coupled in this study by a nonlinear Herzian contact spring, and the complete system matrices of the total track-train system were constructed. Moreover, the interaction phenomenon considering the presence of an open gap in the rail was toughly defined by assigning the irregularity functions between the two sides of the gap. Time history analysis, which has an iteration scheme such as the Newmark-$\beta$ method (based on the Modified Newton-Raphson methods), was conducted to solve the nonlinear equation. .Finally, numerical studies were conducted to assess the effect of the various parameters of the system when applied to various speeds, open-gap sizes, and support stiffnesses of the rail.

Experimental Study of Characteristics of Longitudinal Resistance Behavior of Fasteners in Concrete Track on Bridges (교량 상 콘크리트궤도 체결장치의 종저항 거동특성에 대한 실험적 연구)

  • Yun, Kyung-Min;Park, Beom-Ho;Min, Kyung-Hwan;Lim, Nam-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.638-646
    • /
    • 2016
  • CWR (continuous welded rail) tracks on high-speed railway bridges have much more complicated axial force distributions caused by track-bridge interaction than those behaviors on embankments, and additional problems caused by track-structure interaction with the axial force of the CWR. In order to analyze and limit other physical phenomena caused by track-bridge interaction, a design guideline (KR C-08080, longitudinal track-bridge interaction analysis) is used when designing CWR track on bridges. Domestic analysis and design methods for track-bridge interaction follow the UIC 774-3R, and they suggest conservative methods and deterministic properties. Recently, many studies analyzing the methods of track-bridge interaction considering the loading history are being carried out; however, there has been insufficient studies of the variation of the resistance properties with a consideration of the actual loading history. In this study, the performances of rail fastening systems used for concrete track on bridges were tested and analyzed while considering the loading history. For this purpose, longitudinal and vertical loading combinations, applied in order to simulate the practical conditions and resistance characteristics (stiffness and elastic limit displacement), are analyzed through the experimental results. Also, a comparison study was conducted with the properties in the KR Code.

Statistical Characteristics for Longitudinal Friction Behavior of Rail Fastening System for Concrete Track (콘크리트 궤도용 레일체결장치의 종방향 마찰거동에 대한 통계적 특성)

  • Bae, Hyun-Ung;Park, Sang-Jun;Yun, Kyung-Min;Park, Beom-Ho;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7870-7877
    • /
    • 2015
  • In the case of CWR (Continuous welded rail) located on the railway bridge, the CWR has additional axial force due to interaction of bridge and track. Therefore, the CWR tracks located on the bridge have to secure the safety of running train and CWR track through mitigating influence for interaction of bridge and track. The railway design guide in Korea (KR C-08080) provides a certain value for property of longitudinal friction behavior of rail fastening system that is major parameter of interaction behavior by applying European codes. However, in order to apply to domestic railway, it is necessary to review property characteristics of the rail fastening system in actual use. In this paper, the experiment for longitudinal friction behavior of rail fastener applied to concrete track on the railway bridge in Korea was carried out, and statistical characteristic for property of the rail fastener was analyzed from the result of the experiment.

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

Analysis of CWR Track Considering Wheel Loads (열차하중을 고려한 장대레일 궤도 해석)

  • Han, Sang-Yun;Kang, Young-Jong;Han, Teak-Hee;Lim, Nam-Hyoung;Kim, Jung-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2487-2492
    • /
    • 2011
  • At high rail temperature above the neutral temperature, high compressive axial stresses will occur in the rails. High thermal axial force and vehicle loads cause the track to shift in a lateral direction and the formation of track geometry imperfections (track irregularity). When the thermal stress level and track irregularity with vehicle load reach a critical value, the track loses stability. In many studies, the stability of CWR tracks is analyzed. However these studies are only considered in temperature load. The main objective of this investigation was to estimate a new, comprehensive, realistic, the stability of CWR tracks considering wheel load. The ballast resistance is changed by wheel load. When the wheel load is applied, rails and ties are moved upward or downward. In this case the friction between ties and ballasts is decreased or increased. In this study the change of the ballast resistance of each tie was applied to the nonlinear analysis of CWR tracks.

  • PDF

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

A Guideline for Development of Track-Bridge Structural System with Sliding Layer to Reduce the Track-Bridge Interaction (궤도-교량 상호작용 저감을 위한 슬라이드 층이 고려된 궤도-교량 구조시스템의 개발 방향)

  • Yun, Kyung-Min;Choi, Shin-Hyung;Song, Dae-Seok;Lee, Kyung-Chan;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1469-1476
    • /
    • 2015
  • The bridges take a significant part of entire route in Korea railway, because 70% of Korean territory is covered with mountains. For this reason, span enlargement of railway bridges is more advantageous to increase economic efficiency on the bridge design. However there are many limitations such as additional axial force of the rail, excessive displacement due to track-bridge interaction. In this study, track-bridge interaction analysis was conducted considering the sliding layer which was installed between the track and girder. From the numerical analysis results, the behavior of track-bridge interaction was investigated according to the installation method of sliding layer. Finally, a guideline for development of track-bridge structure system to reduce the track-bridge interaction was proposed.

Stability Analysis for CWR on the Railway Bridges by Linearized Method (선형해석법을 이용한 교량상 장대레일의 안정성 해석 방법 연구)

  • Choi, Young-Gil;Oh, Ju-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.472-480
    • /
    • 2009
  • The stability analysis for CWR is difficult in the theory itself because both geometric and material nonlinearity should be considered. Also the analysis results are varied according to the loading history. In contrast to the complexity in the theory, the analysis results for CWR on the railway bridges are quite simple and can be predicted because of a small buckling effect and its negligible nonlinearity. In this study, refined nonlinear analysis methods for the stability analysis of CWR on the railway bridges were developed which consider only material nonlinearity beeause the effects of geometric nonlinearity are nominal. In this study, the analysis results can be found within limited number of iterations with idealized linear force-displacement relationship. From the analysis result comparisons, it was found that the stability analysis for CWR on the railway bridges can be performed effectively by this method.

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses (수치해석을 이용한 파형 마이크로파일의 지지거동 분석)

  • Han, Jin-Tae;Kim, Sung-Ryul;Jang, Young-Eun;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5906-5914
    • /
    • 2013
  • Recently in Korea, the policy is being proceeded to build a intergenerational housing on artificial ground of railroad site for utilizing rental house. Due to narrow space of rail road site, suitable method have to be developed such as micropiles which is known as a method of a fast construction. However, If micropile is used as foundations for the super structure, construction cost is increases compared with other pile. Consequently, new concept micropile proposed to improve both bearing capacity and cost efficiency of general micropile. New concept micropile consists of waveform cement grout surrounding tread bar that formed by grouting the soil layer with jet grouting method as control the grout pressure and flow. The micropile with waveform is expected to decrease the construction cost by cut down pile length of general micropile. This paper examined the behavior of the new concept micropile with waveform subjected to axial load using two-dimensional axisymmetric numerical analyses method. According to the numerical result, there will cost effectiveness as the pile displacement decreased despite the length of waveform micropile is down about 5% from a general micropile under the same loading condition. Also, the effect of skin friction force which mobilized from the waveform of micropile appeared at relatively soft ground.