• Title/Summary/Keyword: Axial flow rotor

Search Result 189, Processing Time 0.027 seconds

A CFD Study on Wells Turbine Flap for Wave Power Generation (CFD에 의한 파력발전용 웰즈터빈의 플랩에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Choi, M.S.;Lee, Y.W.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.520-525
    • /
    • 2003
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% chord height difference were selected. A Wavier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-D numerical grid is based upon that of an experimental test rig. This paper tries to analyze the optimum double flap of Wells turbine with the numerical analysis.

  • PDF

Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows (텐덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측)

  • Noh, Jun-Gu;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.469-475
    • /
    • 2003
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed differently according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical. The numerical results agree with the measured data in respect of their tendency. It turned out that 0% of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for 75% case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

  • PDF

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.

A Numerical Analysis of Partial Admission Turbine's Performance for Design Parameters of 3D Supersonic Nozzle (3차원 초음속 노즐 형상 변수에 따른 부분입사형 터빈 성능 특성에 관한 수치적 연구)

  • Shin Bong-Gun;Kwak Young-Jae;Kim Kui-Soon;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.34-39
    • /
    • 2005
  • In this study, 3-D nozzle shape and the shape of nozzle at exit plane were adopted as design parameter of 3-D supersonic nozzle and numerical analyses for these parameters have been performed to investigate the flow and performance characteristics for design parameters of the turbine. Firstly, comparing results for nozzle shape, rectangular nozzle had less total pressure loss occurred in axial gap and more power by 1.5% than circular nozzle did. Next, comparing the results for the shape of nozzle at exit plane, it is found that the performance of partial admission turbine was largely depended upon the gap between nozzle wall at exit plane and the hub / tip of rotor blade and the length between nozzles.

  • PDF

Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows (탠덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측)

  • Noh, Jun-Gu;Kim, Jin-han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.27-34
    • /
    • 2004
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed difference according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical result. The numerical results agree with the measured data in respect of their tendency. It turned out that $0\%$ of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for $75\%$ case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

Ocean Current Power Farm Interaction Study (해양 조류발전단지 간섭 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Chae, Kwang-Su;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.109-113
    • /
    • 2009
  • Several tidal current power plants are being planned and constructed in Korea utilizing the strong tidal currents along the west and south coasts. A tidal current reaches 9.7 m on the west coast; there are few potential regions for tidal current power generation. The construction of a dam to store water can prevent the circulation of water, causing a great environmental impact on the coast and estuary. The tidal barrage could produce a large amount of power, but it should be carefully considered. The purpose of developing renewable energies is to minimize the environmental impact and to maximize the utilization of clean energy. To produce a great quantity of power, tidal current farms require the placement of numerous units in the ocean. The power generation is very dependent on the size of the rotor and the incoming flow velocity. Also, the interactions between devices contribute greatly to the production of power. The efficiency of a power farm is estimated to determine the production rate. This paper introduces 3 D interaction problems between rotating rotors, considering the axial, transverse, and diagonal distances between horizontal axis tidal current devices.

Development of air supply system(Turbo blower) for 80kW PEM fuel cell (80kW급 고분자 전해질 연료전지의 공기공급계(터보 블로워) 개발)

  • Lee, Hee-Sub;Kim, Chang-Ho;Lee, Yong-Bok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.67-72
    • /
    • 2006
  • Blower as an air supply system is one of the most important BOP (Balance of Plant) system fur FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power and fuel cell demands a clean air. Considering the efficiency of whole FCV, low friction lubrication of high speed rotor is needed. For the purpose of reducing electrical power and supplying clean air to Fuel cell, oil-free air foil bearings are applied at the each side of brushless motor (BLDC) as journal bearings which diameter is 50mm. The normal power of driving motor has 1.7kW with the 30,000rpm operating range and the flow rate of air has maximum 160 SCFM. The impeller of blower was adopted a mixed type of centrifugal and axial which has several advantages for variable operating condition. The performance of turbo-blower and parameters of air foil bearings was investigated analytically and experimentally. From this study, the performance of the blower was confirmed to be suitable far 80kw PEM FC.

  • PDF

A Study on Partial Admission Characteristics of a Multi-Stage Small-Scaled Turbine (다단 소형 터빈에서의 부분분사 특성에 관한 연구)

  • Cho, Chong-Hyun;Jeong, Woo-Chun;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.943-954
    • /
    • 2010
  • In this study, a radial inflow type turbine was applied and the outer diameter of the turbine rotor was 108 mm. The turbine blade on a circular plate disc was designed as an axial-type because its partial admission rate was 1.4-4.1%. The turbine consisted of three stages. The performance test has been conducted with various admission rates, tip clearances and nozzle flow angles. The turbine output power was measured on each stage. The turbine performance was obtained in a wide rotational speed range in order to compare its performance according to various operating conditions. The net specific output torque was also measured to compare its overall performance. Computational analysis was conducted for predicting turbine performance. The computed results were in good agreement with the experimental results.

Fundamental Studies on the Development of Axial-Flow Combine(I) -Evaluation of the Design Parameters of Grain-Straw Separator- (축류(軸流) 콤바인의 개발(開發)에 관(關)한 기초(基礎) 연구(硏究)(I) -조선별장치(粗選別裝置)의 설계변수(設計變數)의 평가(評價)-)

  • Lee, S.K.;Kim, S.T.;Choi, K.H.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.31-40
    • /
    • 1986
  • Cylindrical and conical types of grain-straw separation equipment which has a stationary crimped sieve drum with rotating inner rotor were constructed. The developed equipments were tested to investigate the characteristics of separating performance under various mechanical conditions and crop conditions. As increase of the inclination of equipment and decrease of pitch of cover vane, the grain recovery was increased while straw rejection was decreased. The grain recovery and overall efficiency were decreased as the rotor speed and feeding velocity were increased for both varieties of rice, moisture contents, and test equipments. Conical prototype equipment performed higher straw rejection, lower grain recovery, and lower power requirement. However, separation performance of conical type equipment was more widely varied with various test conditions compared to cylindrical one. The performance of both equipments showed relatively insensitive to crop feedrate and crop properties, such as variety, moisture content, and grain-to-straw ratio.

  • PDF