• Title/Summary/Keyword: Axial field SRM

Search Result 6, Processing Time 0.02 seconds

Design and Characteristic Analysis of Double Stator Axial Field 12/10 SRM (이중고정자 횡축 12/10 SRM의 설계 및 특성 해석)

  • Son, Dong-Ho;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.730-737
    • /
    • 2018
  • This paper aims to design of a double stator axial field 12/10 SRM. Conventional and single stator axial field SRMs were reviewed to apply for automotive cooling fan. The axial field SRM has the advantage of shorter flux path, higher torque per volume and lower iron loss. However, there is axial eccentricity in single stator axial field SRM due to one side excitation. Therefore, a double stator type is designed in this paper to reduce the axial eccentricity. And the trapezoidal pole shape of the stator increases the flow of magnetic flux from stator to rotor and the torque region. The torque and efficiency are compared and tested with experiments.

Characteristics Analysis of Double Stator Axial Field 12/10 SRM (이중 고정자 횡축 12/10 SRM의 특성 해석)

  • Son, Dong-Ho;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.146-147
    • /
    • 2017
  • 본 논문은 새로운 구조의 이중 고정자 횡축 12/10 Switched Reluctance Motor(SRM)을 설계에 관한연구이다. 자동차 냉각팬에 적용하기 위해 Conventional 12/8과 Single Stator AF(Axial Field) SRM이 검토되었다. Axial Field의 장점은 기존의 방사형 보다 짧은 자속 경로를 가져 높은 토크와 효율을 가지지만 Single Stator AF SRM은 하나의 고정자와 회전자로 이루어져 있어 편심등 기구적으로 불안정하다는 단점이 있다. 이중 고정자 횡축 12/10 SRM은 두 고정자 사이에 회전자가 위치에 있어 Single Stator AF의 단점을 보안 할 수 있으며, 전기적인 특성 및 영향을 검토하기 위해 유한요소해석(FEA)을 수행하였다.

  • PDF

Characteristics Analysis of a Novel Segmental Rotor Axial Field Switched Reluctance Motor with Single Teeth Winding

  • Wang, Bo;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.852-858
    • /
    • 2014
  • A novel 12/10 axial field switched reluctance motor (AF-SRM) is proposed for cooling fan applications in this paper. Unlike from conventional structures, the proposed motor uses the axial field instead of the radio field, the rotor is constructed from a series of discrete segments, and the stator poles are constructed from two types of stator poles: exciting and auxiliary poles. This concept improves the torque capability of a previous design by reducing the copper volume, which leads to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.

Construction and Characteristics of Single Phase Switched Reluctance Motor

  • Oh, Young-Woong;Lee, Eun-Woong;Lee, Jong-Han;Kim, Jun-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.6-11
    • /
    • 2004
  • The single phase switched reluctance motor (SRM) has many merits; simple structure and driving circuits, easy operation and speed control, and etc. This paper presents the torque characteristics of disk type single phase SRM by changing the salient pole lengths and pole arcs. The prototype single phase SRM has a three dimensional magnetic flux pattern because of its structure. That is, the radial and axial magnetic flux contributes to torque generation. Thus, 3D analysis is required for computation of its magnetic field. In this paper, 3D FEM is used for analyzing the magnetic flux distribution and magnetic co-energy.

Design of In-Wheel Type Switched Reluctance Motor for Electric Vehicle Traction and Wireless Charging (전기자동차 트랙션 및 무선 충전용 인휠타입 스위치드 릴럭턴스 전동기 설계)

  • Lukman, Grace Firsta;Son, Dong-Ho;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1866-1872
    • /
    • 2017
  • This paper presents the design of in-wheel type Switched Reluctance Motor (SRM) which can be used as both traction motor and power pickup device in a wireless charging system of electric vehicles. The SRM acts as a traction drive in driving mode and a power receiver in charging mode to avoid any additional weights. Double stator axial field SRM is used due to its structure that can be mounted inside the wheel. The charging circuit is integrated with the asymmetric converter and phase windings of SRM, reducing the cost and size of the system. Magnetic resonance is implemented to increase the efficiency. Simulations done in Maxwell and Simplorer verify the effectiveness of the proposed system.

Axisymmetric Swirling Flow Simulation of the Draft Tube Vortex in Francis Turbines at Partial Discharge

  • Susan-Resiga, Romeo;Muntean, Sebastian;Stein, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.295-302
    • /
    • 2009
  • The flow in the draft tube cone of Francis turbines operated at partial discharge is a complex hydrodynamic phenomenon where an incoming steady axisymmetric swirling flow evolves into a three-dimensional unsteady flow field with precessing helical vortex (also called vortex rope) and associated pressure fluctuations. The paper addresses the following fundamental question: is it possible to compute the circumferentially averaged flow field induced by the precessing vortex rope by using an axisymmetric turbulent swirling flow model? In other words, instead of averaging the measured or computed 3D velocity and pressure fields we would like to solve directly the circumferentially averaged governing equations. As a result, one could use a 2D axi-symmetric model instead of the full 3D flow simulation, with huge savings in both computing time and resources. In order to answer this question we first compute the axisymmetric turbulent swirling flow using available solvers by introducing a stagnant region model (SRM), essentially enforcing a unidirectional circumferentially averaged meridian flow as suggested by the experimental data. Numerical results obtained with both models are compared against measured axial and circumferential velocity profiles, as well as for the vortex rope location. Although the circumferentially averaged flow field cannot capture the unsteadiness of the 3D flow, it can be reliably used for further stability analysis, as well as for assessing and optimizing various techniques to stabilize the swirling flow. In particular, the methodology presented and validated in this paper is particularly useful in optimizing the blade design in order to reduce the stagnant region extent, thus mitigating the vortex rope and expending the operating range for Francis turbines.