• 제목/요약/키워드: Axial beam

검색결과 757건 처리시간 0.028초

조립형 무용접 좌굴방지재로 보강된 역V형 가새의 변형성능 (Deformation Capacity of Inverted V-Type Brace Strengthened by Built-up Non-welded Buckling Restraint Element)

  • 김선희;문지영;최성모
    • 한국강구조학회 논문집
    • /
    • 제27권3호
    • /
    • pp.261-271
    • /
    • 2015
  • 철골 중심 가새 골조는 최소의 물량으로 건물의 횡력에 대한 저항력을 확보할 수 있는 매우 효과적인 시스템이다. 본 논문에서는 기 설치된 H형 가새를 무 용접 냉간 성형보강재로 보강하여 휨-좌굴을 억제하고 인장력과 압축력에 동일한 강도를 확보하는 보강안에 대한 연구를 진행하였다. 역 V형 가새 골조에 설치된 H형가 새의 보강방안으로 선행연구의 보강재를 약축 보강형으로 변경하여 보강방안을 제시하고 부재실험, 부재변수해석, 골조실험을 통해 구조성능을 평가하였다. 보강된 가새는 AISC기준을 만족하였다. 이를 통해 보강으로 골조내 가새의 불 균형력에 의한 보의 파괴가 방지될 것으로 기대된다.

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF

Numerical analysis and horizontal bearing capacity of steel reinforced recycled concrete columns

  • Ma, Hui;Xue, Jianyang;Liu, Yunhe;Dong, Jing
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.797-820
    • /
    • 2016
  • This paper simulates the hysteretic behavior of steel reinforced recycled concrete (SRRC) columns under cyclic loads using OpenSees software. The effective fiber model and displacement-based beam-column element in OpenSees is applied to each SRRC columns. The Concrete01 material model for recycled aggregate concrete (RAC) and Steel02 material model is proposed to perform the numerical simulation of columns. The constitutive models of RAC, profile steel and rebars in columns were assigned to each fiber element. Based on the modelling method, the analytical models of SRRC columns are established. It shows that the calculated hysteresis loops of most SRRC columns agree well with the test curves. In addition, the parameter studies (i.e., strength grade of RAC, stirrups strength, steel strength and steel ratio) on seismic performance of SRRC columns were also investigated in detail by OpenSees. The calculation results of parameter analysis show that SRRC columns suffered from flexural failure has good seismic performance through the reasonable design. The ductility and bearing capacity of columns increases as the increasing magnitude of steel strength, steel ratio and stirrups strength. Although the bearing capacity of columns increases as the strength grade of RAC increases, the ductility and energy dissipation capacity decreases gradually. Based on the test and numerical results, the flexural failure mechanism of SRRC columns were analysed in detail. The computing theories of the normal section of bearing capacity for the eccentrically loaded columns were adopted to calculate the nominal bending strength of SRRC columns subjected to vertical axial force under lateral cyclic loads. The calculation formulas of horizontal bearing capacity for SRRC columns were proposed based on their nominal bending strength.

NATM 터널에서 강지보와 숏크리트 합성부재의 하중지지력에 관한 연구 (A Study on Load Bearing Capacity of Composite Member with Steel Rib and Shotcrete in NATM Tunnel)

  • 문상화;신영완;김승환;유한규
    • 대한토목학회논문집
    • /
    • 제32권5C호
    • /
    • pp.221-229
    • /
    • 2012
  • NATM터널의 안정성 확보를 위해 지반조건이 불량한 경우 숏크리트에 격자지보나 H형강 등의 강지보를 보강하는 경우가 많다. 그러나 설계 시 강지보를 숏크리트가 경화되기 전 임시지보재로 간주하여 수치해석 시 고려하지 않는 것이 일반적이며, 수치해석에 고려하더라도 모델링 방법이 다양하다. 본 연구에서는 휨강도실험, 압축강도실험, 그리고 실대형실험을 통하여 강지보와 숏크리트 합성부재의 거동과 하중 부담률을 분석하였다. 또한 실험과 같은 조건에서 숏크리트와 강지보의 고려방법을 달리하여 수치해석을 실시하여 실험결과와 비교분석하였다. 연구결과 숏크리트와 강지보는 경계면에서의 미끄러짐(slip)으로 인하여 일체로 거동하지 않으며, 수치해석 시 휨모멘트는 강지보가 모두 부담하고 축력은 숏크리트와 강지보가 압축강성비에 따라 분담하는 것으로 고려하는 것이 적절한 것으로 평가되었다.

Ray-tracing 기법을 이용한 축변위 그레고리안 안테나 설계 (The Axial-displaced gregorian antenna design using Ray-tracing Method)

  • 김춘원
    • 한국항공우주학회지
    • /
    • 제42권6호
    • /
    • pp.515-521
    • /
    • 2014
  • 본 논문에서는 Ray-tracing 기법을 이용하여 그레고리안 안테나의 부반사판을 축변환 후 회전하여 급전혼으로 회귀되는 전파를 없애 이득 및 정재파비를 개선 시키고 부반사판의 크기와 전체적인 부피를 줄여 효율적인 구조를 갖는 축변위그레고리안 안테나를 설계하였다. 설계된 급전혼의 방사패턴을 이용하여 급전혼-부반사판-주반사판으로 전달되는 전파의 경로를 추적하여 주반사판 개구면에서의 전계분포를 구하고 이로부터 원거리 복사패턴을 계산하는 프로그램을 작성하여 안테나 성능을 최적화 하였다. 설계된 안테나는 CST와 제작 측정을 통해 계산결과와 비교하여 이득, 빔폭, 방사패턴, 부엽준위, 반사손실이 계산 결과와 매우 유사함을 확인함으로써 Ray-tracing기법에 대한 타당성을 검증하였다.

회전 디스크-스핀들, 액츄에이터와 지지구조의 유연성을 고려한 하드 디스크 드라이브의 고유 및 강제 진동 해석 (Free and Forced Vibration Analysis of a Hard Disk Drive Considering the Flexibility of Spinning Disk-Spindle, Actuator and Supporting Structure)

  • 서찬희;장건희;이호성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.660-665
    • /
    • 2006
  • This paper presents a finite element method to analyze the free and forced vibration of a hard disk drive (HDD) considering the flexibility of a spinning disk-spindle with fluid dynamic bearings (FDBs), an actuator with pivot bearings, an air bearing between head-disk interface and the base with complicated geometry. Finite element equation of each component is consistently derived with the satisfaction of the geometric compatibility of the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. The actuator am, E-block, suspension and base plate are modeled by tetrahedral elements. The pivot bearing in the actuator and the air bearing between head-disk interfaces are modeled by the stiffness element with five degrees of freedom and the axial stiffness, respectively. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem with the restarted Arnoldi iteration method. Modal and shock testing are performed to show that the proposed method well predicts the vibration characteristics of a HDD.

  • PDF

Evaluation of Morphological Changes in Degenerative Cartilage Using 3-D Optical Coherence Tomography

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • 제12권2호
    • /
    • pp.98-102
    • /
    • 2008
  • Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease. Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images. This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of $6{\times}3.2{\times}2.5\;mm^3$. The axial resolution was $8\;{\mu}m$ in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen. The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.

Shear strength analyses of internal diaphragm connections to CFT columns

  • Kang, Liping;Leon, Roberto T.;Lu, Xilin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1083-1101
    • /
    • 2015
  • Previous theoretical equations for the shear capacity of steel beam to concrete filled steel tube (CFT) column connections vary in the assumptions for the shear deformation mechanisms and adopt different equations for calculating shear strength of each component (steel tube webs, steel tube flanges, diaphragms, and concrete etc.); thus result in different equations for calculating shear strength of the joint. Besides, shear force-deformation relations of the joint, needed for estimating building drift, are not well developed at the present. This paper compares previously proposed equations for joint shear capacity, discusses the shear deformation mechanism of the joint, and suggests recommendations for obtaining more accurate predictions. Finite element analyses of internal diaphragm connections to CFT columns were carried out in ABAQUS. ABAQUS results and theoretical estimations of the shear capacities were then used to calibrate rotational springs in joint elements in OpenSEES simulating the shear deformation behavior of the joint. The ABAQUS and OpenSEES results were validated with experimental results available. Results show that: (1) shear deformation of the steel tube dominates the deformation of the joint; while the thickness of the diaphragms has a negligible effect; (2) in OpenSEES simulation, the joint behavior is highly dependent on the yielding strength given to the rotational spring; and (3) axial force ratio has a significant effect on the joint deformation of the specimen analyzed. Finally, modified joint shear force-deformation relations are proposed based on previous theory.

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

A simple mathematical model for static analysis of tall buildings with two outrigger-belt truss systems

  • Rahgozar, Reza;Ahmadi, Ali Reza;Hosseini, Omid;Malekinejad, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.65-84
    • /
    • 2011
  • In this paper a simple mathematical model for approximate static analysis of combined system of framed tube, shear core and two outrigger-belt truss structures subjected to lateral loads is presented. In the proposed methodology, framed tube is modeled as a cantilevered beam with a box section and interaction between shear core and outrigger-belt truss system with framed tube is modeled using torsional springs placed at location of outrigger-belt truss; these torsional springs act in a direction opposite to rotation generated by lateral loads. The effect of shear lag on axial deformation in flange is quadratic and in web it is a cubic function of geometry. Here the total energy of the combined system is minimized with respect to lateral deflection and rotation in plane section. Solution of the resulting equilibrium equations yields the unknown coefficients of shear lag along with the stress and displacement distributions. The results of a numerical example, 50 storey building subjected to three different types of lateral loading obtained from SAP2000 are compared to those of the proposed method and the differences are found to be reasonable. The proposed method can be used during the preliminary design stages of a tall building and can provide a better understanding of the effects of various parameters on the overall structural behavior.